
   

 

 

  

 

Internal 

 

Resilient and Adaptive Supply Chains for Capability-based 

Manufacturing as a Service Networks 

 
Grant Agreement No. 101138782 

 

 

Deliverable 1.3 

 

Software & information architecture 

 

  

Ref. Ares(2025)6248310 - 31/07/2025



D1.3 Software & information architecture 
 

 

   
 

 

Page | 2 
 
 

 

Internal 

Project title RAASCEMAN - Resilient and Adaptive Supply Chains for 

Capability-based Manufacturing as a Service Networks 

Grant Agreement number 101138782 

Funding scheme Call: HORIZON-CL4-2023-TWIN-TRANSITION-01 

Topic: HORIZON-CL4-2023-TWIN-TRANSITION-01-07 

Project duration 1 September 2024 – 31 August 2027 (36 months) 

Project coordinator DFKI – Deutsches Forschungszentrum für Künstliche Intelligenz GmbH 

Deliverable number D1.3 

Title of the deliverable Software & information architecture 

WP contributing to the 

deliverable 

WP1 

Deliverable type R 

Dissemination level PU 

Due submission date 30 June 2025 

Actual submission date  

Partner(s)/Author(s) INTRA, DFKI, FM, CEA, LMS, CTU, RPTU 

Internal reviewers DFKI 

Final approval  

 

 
Disclaimer 

Funded by the European Union. Views and opinions expressed are however those of the author(s) only 
and do not necessarily reflect those of the European Union or European Health and Digital Executive Agency 
(HADEA). Neither the European Union nor the granting authority can be held responsible for them. 
 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 3 
 
 

 

Internal 

  



D1.3 Software & information architecture 
 

 

   
 

 

Page | 4 
 
 

 

Internal 

History of changes 

When Who Comments 

13/05/2025 INTRA Outline 

27/05/2025 INTRA, DFKI, FM Contributions to section 4 

03/06/2025 CEA, DFKI, FM, LMS, CTU, RPTU Contributions to sections 1, 2 and 3 

17/06/2025 CEA, DFKI, FM, LMS, CTU, RPTU Finalization of contributions to section 4 

24/06/2025 INTRA Finalization of contributions to section 4 and 5 

28/06/2025 DFKI Internal review 

31/06/2025 CEA, DFKI, FM, LMS, CTU, RPTU, 

INTRA 

Improvements after the internal review 

8/07/2025 DFKI, INTRA Finalization of the internal review process 

 

Confidentiality 

Does this report contain confidential 

information? 
Yes ☐  No 🗹 

Is the report restricted to a specific group? Yes ☐  No 🗹 

If yes, please precise the list of authorized recipients: 

 

  



D1.3 Software & information architecture 
 

 

   
 

 

Page | 5 
 
 

 

Internal 

Table of Contents 

Executive Summary ................................................................................................................................. 7 

1 Introduction ..................................................................................................................................... 8 

2 Use Cases & Requirements Analysis................................................................................................ 9 

2.1 Introduction and Methodology.............................................................................................. 9 

2.2 Technical Requirements Analysis ........................................................................................... 9 

3 SotA Analysis & Technology Assessment ...................................................................................... 23 

3.1 Generic Architectures (RAMI, IIoT, IIRA) .............................................................................. 23 

3.1.1 RAMI ................................................................................................................................ 23 

3.1.2 Industrial Internet Reference Architecture ..................................................................... 25 

3.1.3 Industrial Internet of Things ............................................................................................ 27 

3.2 Security (Intra & Cross Company) ........................................................................................ 30 

3.2.1 Intra-company security .................................................................................................... 30 

3.2.2 Cross-company security ................................................................................................... 36 

3.3 Interoperability .................................................................................................................... 43 

3.3.1 Interoperability challenges .............................................................................................. 44 

3.3.2 Semantic Interoperability ................................................................................................ 44 

3.3.3 Syntactic interoperability ................................................................................................ 47 

3.3.4 Technical Interoperability ................................................................................................ 48 

3.4 Conclusions .......................................................................................................................... 50 

4 Conceptual Architecture ............................................................................................................... 51 

4.1 Business Layer components ................................................................................................. 51 

4.1.1 Supply Chain level support tools ..................................................................................... 51 

4.1.2 Factory level support tools .............................................................................................. 59 

4.2 Information Layer components ........................................................................................... 62 

4.2.1 CSS model ........................................................................................................................ 63 

4.2.2 Product Digital Twin (PDT) ............................................................................................... 64 

4.3 Infrastructure Layer components ........................................................................................ 65 

4.3.1 AAS Infrastructure ........................................................................................................... 66 

4.3.2 MaaS Platform ................................................................................................................. 67 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 6 
 
 

 

Internal 

4.4 Conceptual Architecture Implementation ........................................................................... 70 

5 Conclusion ..................................................................................................................................... 74 

6 REFERENCES .................................................................................................................................. 75 

 

  



D1.3 Software & information architecture 
 

 

   
 

 

Page | 7 
 
 

 

Internal 

Executive Summary 

This deliverable presents the RAASCEMAN’s system architecture, while also highlighting the 

participating technological building blocks. In order to achieve this, the system’s requirements are 

identified and converted into technical specifications. These specifications are then mapped to 

technological building blocks. The system’s architecture includes these technological blocks along with 

the interfaces between them. Additionally, for reinforcing the architecture design process, a thorough 

analysis of state-of-the-art technologies in different aspects including industrial reference 

architectures, interoperability and security will be taken into consideration. The goal of this approach 

is to bring together all the identified components in an efficient and scalable way. 

 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 8 
 
 

 

Internal 

1 Introduction 

This deliverable presents the software and information architecture of the RAASCEMAN project in 

order to support adaptive capability-based Manufacturing as a Service (MaaS) networks. The 

methodology used for the architecture was to combine pilot requirements analysis results with “State 

of the Art” analysis and last but not least the components/methodologies that have been identified as 

outputs of the various RAASCEMAN technical tasks from the “Detailed Work Description/Description 

of Work” (DoW) of the RAASCEMAN project. 

 

Figure 1: Software architecture methodology 

For the technical requirements, a structured technical requirement analysis is performed for each pilot 

to identify the critical functional and non-functional requirements. This analysis is crucial for ensuring 

alignments between business goals and technical implementation. Each of these requirements have 

been associated with a technological building block from project’s work plan and each block is linked 

with at least one functional layer. In this way, the architectural functional layer groups are derived, 

including business logic, infrastructure, integration, information, security, presentation and 

persistence. 

State-of-the-art technologies are explored based on the afore identified functional layers and most 

specifically the infrastructure, integration, information, and security layers. Regarding the 

infrastructure layer, a generic architecture state-of-the-art is performed to examine architectures like 

RAMI and IIRA, while for the integration layer data exchange technologies are explored such as OWL 

and RDF. For the information layer analysis, the focus was towards standardized protocols and data 

formats, like HTTP and JSON. Finally, concerning security, intra- and cross- company security 

mechanisms and approaches are evaluated, such as authentication mechanisms and data spaces. 

Building upon this methodology, a conceptual architecture is proposed, defining the main participating 

components and their interaction across the system. 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 9 
 
 

 

Internal 

2 Use Cases & Requirements Analysis 

2.1 Introduction and Methodology 

Requirements analysis is a critical activity in system engineering, serving as a bridge between 

stakeholder needs and the overall system architecture. It ensures that the system's functionalities are 

clearly defined, and traceable throughout the development lifecycle. In complex, distributed, and 

domain-specific environments such as industrial IoT and digital manufacturing, requirement analysis 

ensures alignment between business goals and technical implementation. 

The process followed for technical requirement analysis, as depicted below, was based on a structured, 

traceable methodology grounded in software engineering best practices. The technical requirements 

presented in D1.1 was the basis, then they were linked to relevant use cases, as recommended in IEEE 

830 and ISO/IEC/IEEE 29148 standards for software requirements specification [1][2]. In a later step, 

these requirements were mapped to architectural components, associating system responsibilities to 

specific elements within the architecture [3]. Next, a component-centric view was created based on 

Requirements Traceability Matrices (RTMs) [4][5] and finally were categorized into functional 

architecture layers, including Infrastructure, Integration, Business Logic, Information, Security, and 

Persistence layers. The identification of core functional components will help identify the fields that 

would require a state-of-the-art analysis but also allow a preliminary conceptual design of the overall 

architecture. 

2.2 Technical Requirements Analysis 

The table below shows the first steps on the requirement analysis phase depicting the mapping of the 

requirements to the use cases but also the architecture component that fulfills each requirement. 

Table 1 Requirements to Use Cases Mapping 

ID Requirement Use Case 
ID 

Architecture Components 

REQ1.1 The service, capability and 
skill modelling shall be able 
to represent all necessary 
information to exchange 
the offers and quotations 
between a manufacturing 
service provider and a 
requester. 

5 "Service, capability and skill 
models" 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 10 
 
 

 

Internal 

REQ1.1.1 The service, capability and 
skill modelling shall 
provide all manufacturing 
services and information 
from a manufacturing 
service provider/requester 
and their machine, 
production lines and to 
manufacture the 
requested part. 

5 "AAS Infrastructure", "Service, 
capability and skill models" 

REQ1.1.1.1 The service, capability and 
skill modelling shall include 
standard specification and 
submodels for the 
AAS/digital representation 
of the machine, production 
lines and requested 
product. 

5 "AAS Infrastructure", "Service, 
capability and skill models" 

REQ1.1.1.2 The service, capability and 
skill modelling shall include 
a standard dictionary like 
ECLASS and IEC 61360 to 
have a common 
understanding of the 
provided/requested 
services and capabilities. 

5 "Service, capability and skill 
models" 

REQ1.1.1.3 The service, capability and 
skill modelling shall be 
editable by the 
manufacturing service 
provider/requester to 
adapt/add value to the 
services they 
provide/request. 

5 "Service, capability and skill 
models" 

REQ1.1.1.4 The service, capability and 
skill modelling shall be 
extensible by a consortium 
to add new submodels 
required to exchange 
information between two 
participants. 

5 "Service, capability and skill 
models" 

REQ1.1.1.5 The service, capability and 
skill modelling can have 
GUI to visualize the noted 

5 "Service, capability and skill 
models", "User Interface" 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 11 
 
 

 

Internal 

machines, production 
lines, requested parts, 
services and capabilities 
from the user of the MaaS. 

REQ1.1.1.6 The service, capability and 
skill modelling shall have a 
secure connection via the 
data from the machines 
and production lines to the 
MaaS platform to provide 
an update on the 
production of the 
requested part. 

5 "Service, capability and skill 
models", "AAS 
Infrastructure/Shopfloor 
Connection" 

REQ1.1.1.7 The service, capability and 
skill modelling shall use a 
common language, such as 
the I4.0 language, which 
describes the vocabulary, 
message structure and 
interaction protocols. 

5 "AAS Infrastructure", "Service, 
capability and skill models", "MaaS 
Platform/I4.0 Language" 

REQ1.1.1.8 The service, capability and 
skill modelling can provide 
the AAS/Digital 
Representation locally in 
each factory. 

5 "AAS Infrastructure", "Service, 
capability and skill models" 

REQ1.1.1.9 The service, capability and 
skill modelling shall 
provide different access 
levels to connect and edit 
the AAS/Digital 
representation. 

5 "AAS Infrastructure", "Service, 
capability and skill models" 

REQ1.2 The PDT shall allow the 
service requester/provider 
participating in the MaaS 
network to describe 
information related to 
their product, so that the 
product can be used easily 
over its full lifecycle. 

5 "Product Digital Twin Models" 

REQ1.2.1 The PDT shall include the 
capability, service, and skill 
(CSS) model of the product 
that encompasses the 

5 "AAS Infrastructure", "Service, 
capability and skill models", 
"Product Digital Twin Models" 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 12 
 
 

 

Internal 

standardized AAS models 
and submodels. 

REQ1.2.2 & 
REQ1.2.3 

The PDT shall include 
editable models to store 
information about skills 
and values related to 
relevant features like 
process duration, cost and 
carbon footprint, to name 
a few, based on the need of 
the product. 

3 "Product Digital Twin Models" 

REQ1.2.4 The PDT shall have a GUI or 
editable models to specify 
products based on 
standards such as ECLASS 
ID. 

3 "Product Digital Twin Models", 
"User Interface" 

REQ1.2.5 The PDT shall provide 
mechanisms to provide an 
aggregated view of 
different information such 
as BoM, BoP, quality 
control, to name a few. 

3 "Product Digital Twin Models" 

REQ1.2.6 The PDT shall include 
editable models to store 
information about the 
different steps used in the 
manufacturing of a 
product, in order to create 
a holistic digital product 
passport (DPP). 

3 "Product Digital Twin Models" 

REQ1.2.7 The PDT shall include 
editable models to 
aggregate information 
about the different digital 
twins (such as system and 
process models) to track 
the entire lifecycle of a 
product. 

3 "Product Digital Twin Models" 

REQ2.1 Support the creation and 
manipulation of AASs (API). 
To ensure real-time 
communication between 
field level devices 
(machines, sensors etc.) 

1, 2, 3, 4, 5 "AAS 
Infrastructure/Communication 
Gateway" 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 13 
 
 

 

Internal 

and their digital 
representatives (AAS); 
standardized 
communication protocols 
should be supported. 

REQ2.1.1 Support standardized 
protocols (OPCUA, MQTT, 
REST etc.) for linking 
shopfloor data with 
corresponding data models 
(AAS). 

1, 2, 3, 4, 5 "AAS Infrastructure/IIoT 
Infrastructure" 

REQ2.1.2 Provision of historical data 
(IoT data). The system 
should support 
information storage and 
retrieval for historical 
purposes (i.e. process 
optimization etc.) 

1, 2, 3, 4, 5 "AAS Infrastructure/IIoT 
Infrastructure" 

REQ2.2 Provision of the ability to 
define data sharing policy. 
The system should support 
standardized interfaces to 
ensure secure data 
exchange between 
different 
systems/companies. 

1, 2, 3, 4, 5 "MaaS Platform/Data Sovereignty" 

REQ2.2.1 Provision of standardized 
interfaces for sharing and 
consuming information. 
Supply Chain Level Support 
Tools for impact prediction 
of disruptive events. For 
manufacturers, the main 
objective is to be able to 
analyse and assess 
potential risks and costs for 
their industry. 

1, 2, 3, 4, 5 "MaaS Platform/Communication 
Gateway" 

REQ3.1 Impact Prediction Tool 
must be able to assess the 
risk of different supply 
chain disturbances and 
predict associated impact 
to the business 
performance. 

1 "Impact Prediction Tool" 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 14 
 
 

 

Internal 

REQ3.1.1 Impact prediction tool 
must be adaptable to 
different business cases 
and integrate information 
regarding its current 
status. 

1 "Impact Prediction Tool" 

REQ3.1.1.1 The software provides 
connectivity with industrial 
data dynamically and 
identify the latest status 
and events during runtime. 

1 "Impact Prediction Tool", "AAS 
Infrastructure/IIoT Infrastructure" 

REQ3.1.2 Impact prediction tool 
must calculate and display 
the likelihood of specific 
events and an estimation 
of its impact in the 
company's KPIs. 

1 "Impact Prediction Tool" 

REQ3.1.2.1 There should be a specific 
list of event types upon 
which the model must be 
able to be re-trained based 
on a company's historical 
data. 

1 "Impact Prediction Tool/Event 
Handling Module" 

REQ3.1.2.2 The tool must provide the 
ability to select among 
different events and 
display the probability of 
the event happening upon 
a specific horizon, along 
with the cost/benefit for 
the company. 

1 "Impact Prediction Tool/Event 
Handling Module" 

REQ3.2 The decision support tool 
shall be able to present 
decision support 
information in terms of 
manufacturing goals. 

1 "Decision Support Tool" 

REQNF3.2.1 The decision support tool 
must provide feedback 
upon requests within 10 
seconds. 

1 "Decision Support Tool" 

REQ3.2.1 The decision support tool 
shall have access to 
historical and state data for 
its analysis. 

1 "Decision Support Tool", "AAS 
Infrastructure/Communication 
Gateway", "MaaS 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 15 
 
 

 

Internal 

Platform/Communication 
Gateway" 

REQ3.2.1.1 The decision support tool 
shall incorporate historical 
data from the MaaS 
network for its analysis. 

1 "Decision Support Tool", "MaaS 
Platform/History" 

REQ3.2.1.2 The decision support tool 
shall be able to use data 
describing the current 
state of the MaaS network. 

1 "Decision Support Tool", "MaaS 
Platform/Communication 
Gateway" 

REQ3.2.1.3 The decision support tool 
shall be able to use data 
describing the current 
state of the internal 
production system. 

1 "Decision Support Tool", "AAS 
Infrastructure/Communication 
Gateway" 

REQ3.2.1.4 The decision support tool 
shall be able to use product 
digital twin data with 
embedded manufacturing 
goal metrics. 

1 "Decision Support Tool", "Product 
Digital Twin Models" 

REQ3.2.2 The decision support tool 
shall be able to use the 
impact prediction tool with 
what-if scenarios. 

1 "Decision Support Tool" 

REQ3.2.2.1 The decision support tool 
shall be able to send a 
scenario in the input 
format of the impact 
prediction tool. 

1 "Decision Support Tool" 

REQ3.2.2.2 The decision support tool 
shall be integrated with the 
output format of the 
impact prediction tool. 

1 "Decision Support Tool", "Impact 
Prediction Tool" 

REQ3.2.3 The decision support tool 
shall visualize a trade-off 
between finding a new 
supplier and changing 
production. 

1 "Decision Support Tool" 

REQ3.2.3.1 The decision support tool 
shall include a visualization 
of the temporary make-or-
buy analysis with a 

1 "Decision Support Tool/User 
Interface" 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 16 
 
 

 

Internal 

comparison of the 
manufacturing goals. 

REQ3.2.3.2 The decision support tool 
shall include an explicit 
visualization of uncertainty 
on every estimated 
manufacturing goal metric. 

1 "Decision Support Tool/User 
Interface" 

REQ3.2.4 The decision support tool 
shall include a user 
interface to edit 
manufacturing goal 
metrics and events. 

1 "Decision Support Tool/User 
Interface" 

REQ3.2.4.1 The editor shall allow users 
to define uncertainty for a 
metric in terms of a 
probability distribution. 

1 "Decision Support Tool/User 
Interface" 

REQ3.2.4.2 The editor shall allow users 
to define uncertainty for an 
event in terms of a 
probability. 

1 "Decision Support Tool/User 
Interface" 

REQ4.1.1.1 During the manufacturing 
service onboarding to the 
MaaS, the audit tool shall 
validate if the service 
corresponds to the 
manufacturer’s production 
capabilities. 

3 "Trustworthiness Audit Tool" 

REQ4.1.1.2 The audit tool shall 
automatically validate if 
the offered service can be 
provided by the 
manufacturing service 
provider. 

3 "Trustworthiness Audit Tool" 

REQ4.1.1.3 The audit tool shall provide 
a performance score about 
the potential 
manufacturing service. 

3 "Trustworthiness Audit Tool" 

REQ4.1.2.1 The recommendation 
engine shall generate the 
supply chain alternatives 
for the requested 
manufacturing service. 

3 "Recommendation Engine" 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 17 
 
 

 

Internal 

REQ4.1.2.2 The recommendation 
engine shall be able to 
automatically negotiate 
with the potential 
manufacturing service 
providers. 

3 "Recommendation Engine", "MaaS 
Platform/Communication 
Gateway" 

REQ4.1.2.3 The recommendation 
engine shall rank the 
potential manufacturing 
service providers based on 
their production 
capabilities and the 
requester's goals. 

3 "Recommendation Engine", 
"Trustworthiness Audit Tool" 

REQ4.1.2.4 The recommendation 
engine shall provide all 
relevant information about 
the offered service, such as 
CO2 footprint, 
environmental and health 
impact. 

3 "Recommendation Engine", 
"Product Digital Twin Models" 

REQ4.1.2.5 The recommendation 
engine shall provide the 
information about the 
manufacturing services in 
compliance with the 
common information 
model. 

3 "Recommendation Engine", 
"Service, capability and skill 
models" 

REQ5.1 The capability matching 
tool shall employ a 
semantic framework that 
integrates with the 
broader RAASCEMAN 
information model, 
supporting standards such 
as Asset Administration 
Shells (AAS) and OPC-UA as 
well as the use of standard 
dictionaries for consistent 
capability descriptions. 

2 "AAS Infrastructure", "Capability 
Matching Engine" 

REQ5.1.1 The capability matching 
tool shall represent all 
relevant service, capability, 
and skill data of resources 
in a GraphDB-based 

2 "Capability Matching Engine", 
"Service, capability and skill 
models" 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 18 
 
 

 

Internal 

structure. It shall enable 
real-time querying based 
on capability requirements 
specified by manufacturing 
service requesters. 

REQ5.1.2 The capability matching  
tool shall support 
manufacturing systems 
(MES, ERP) to reflect 
changes in machine states, 
tool availability, and 
personnel scheduling. 

2 "Capability Matching Engine" 

REQ5.1.3 The tool shall integrate 
with dynamic planning and 
scheduling systems from 
sections 5.3.2 and 5.3.3. It 
will support the task 
planning and execution 
tools by exporting 
capability-matching results 
for operational readiness. 

2 "Capability Matching Engine", 
"Dynamic Planning & Scheduling" 

REQ5.1.4 The user interface shall 
accept input in natural 
language, processed by an 
LLM for compatibility and 
ease of use. It will provide 
actionable 
recommendations for 
resource-task matching 
and highlight resource 
unavailability. 

2 "Capability Matching Engine" 

REQ5.2 The dynamic planning and 
scheduling tool shall be 
triggered if unforeseen or 
planned events occur to 
adapt the current 
production plan. 

4 "Dynamic Planning & Scheduling" 

REQ5.2.1 The dynamic planning and 
scheduling tool  shall have 
an interface to 
communicate to intra- and 
inter-factory components 
to provide meaningful 
production plans. 

4 "Dynamic Planning & Scheduling", 
"AAS 
Infrastructure/Communication 
Gateway", "MaaS 
Platform/Communication 
Gateway" 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 19 
 
 

 

Internal 

REQ5.2.1.1 The dynamic planning and 
scheduling tool shall 
provide different 
executable plans that can 
be easily applied in the 
production procedures. 

4 "Dynamic Planning & Scheduling" 

REQ5.2.1.2 The dynamic planning and 
scheduling tool shall notify 
connected services about 
the current progress of the 
planning and scheduling 
procedure and already 
available results. 

4 "Dynamic Planning & Scheduling" 

REQ5.2.1.3 The dynamic planning and 
scheduling tool shall be 
able to provide adapted 
production plans in real-
time such that it can be 
used dynamically. 

4 "Dynamic Planning & Scheduling" 

REQ5.3 The dynamic execution of 
tasks on the shopfloor shall 
be able to react to 
unforeseen events and 
change the production 
equipment on the 
shopfloor in a short time to 
execute a new process. 

4 "Dynamic Execution Engine" 

REQ5.3.1 The dynamic execution of 
tasks on the shopfloor shall 
have a software interface 
to change the production 
with a small number of 
parameters. 

4 "Dynamic Execution Engine" 

REQ5.3.1.1 The dynamic execution of 
tasks on the shopfloor shall 
have a parameterizable 
software interface to 
prepare the execution of 
production changes for 
production lines and 
machines. 

4 "Dynamic Execution Engine" 

REQ5.3.1.2 The dynamic execution of 
tasks on the shopfloor shall 
be able to trigger the 

4 "Dynamic Execution Engine" 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 20 
 
 

 

Internal 

execution of production by 
the manufacturing service 
provider. 

REQ5.3.1.3 The dynamic execution of 
tasks on the shopfloor shall 
provide information on the 
duration and scope of 
production for the 
manufacturing service 
provider. 

4 "Dynamic Execution Engine" 

REQ5.3.1.4 The dynamic execution of 
tasks on the shopfloor shall 
notify the manufacturing 
service provider that the 
production is ready to 
produce the new order. 

4 "Dynamic Execution Engine" 

 

For the “Requirements Traceability Matrices” the table below shows a component-centric view and 

also maps the components to functional layers. 

Table 2 Component-centric RTMs 

Main Component Subcomponent Fulfilled 
Requirements 

Functional Layer 

AAS Infrastructure 
 

['REQ1.1.1', 
'REQ1.1.1.1', 
'REQ1.1.1.7', 
'REQ1.1.1.8', 
'REQ1.1.1.9', 
'REQ1.2.1', 
'REQ5.1'] 

Infrastructure Layer 

 
Communication 
Gateway 

['REQ2.1', 
'REQ3.2.1', 
'REQ3.2.1.3', 
'REQ5.2.1'] 

Integration Layer 

 
IIoT Infrastructure ['REQ2.1.1', 

'REQ2.1.2', 
'REQ3.1.1.1'] 

Infrastructure Layer 

 
Shopfloor Connection ['REQ1.1.1.6'] Infrastructure Layer 

Capability Matching Engine 
 

['REQ5.1', 
'REQ5.1.1', 
'REQ5.1.2', 
'REQ5.1.3', 
'REQ5.1.4'] 

Business Logic Layer 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 21 
 
 

 

Internal 

Decision Support Tool 
 

['REQ3.2', 
'REQNF3.2.1', 
'REQ3.2.1', 
'REQ3.2.1.1', 
'REQ3.2.1.2', 
'REQ3.2.1.3', 
'REQ3.2.1.4', 
'REQ3.2.2', 
'REQ3.2.2.1', 
'REQ3.2.2.2', 
'REQ3.2.3'] 

Business Logic Layer 

 
User Interface ['REQ3.2.3.1', 

'REQ3.2.3.2', 
'REQ3.2.4', 
'REQ3.2.4.1', 
'REQ3.2.4.2'] 

Business Logic Layer 

Dynamic Planning & Scheduling 
 

['REQ5.1.3', 
'REQ5.2', 
'REQ5.2.1', 
'REQ5.2.1.1', 
'REQ5.2.1.2', 
'REQ5.2.1.3'] 

Business Logic Layer 

Impact Prediction Tool 
 

['REQ3.1', 
'REQ3.1.1', 
'REQ3.1.1.1', 
'REQ3.1.2', 
'REQ3.2.2.2'] 

Business Logic Layer 

 
Event Handling Module ['REQ3.1.2.1', 

'REQ3.1.2.2'] 
Business Logic Layer 

MaaS Platform 
  

Infrastructure Layer  
Communication 
Gateway 

['REQ2.2.1', 
'REQ3.2.1', 
'REQ3.2.1.2', 
'REQ4.1.2.2', 
'REQ5.2.1'] 

Integration Layer 

 
Data Sovereignty ['REQ2.2'] Security Layer  
History ['REQ3.2.1.1'] Persistence Layer 

Product Digital Twin Models I4.0 Language ['REQ1.1.1.7'] Information Layer   
['REQ1.2', 
'REQ1.2.1', 
'REQ1.2.2', 
'REQ1.2.3', 
'REQ1.2.4', 

Information Layer 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 22 
 
 

 

Internal 

'REQ1.2.5', 
'REQ1.2.6', 
'REQ1.2.7', 
'REQ3.2.1.4', 
'REQ4.1.2.4'] 

Recommendation Engine 
 

['REQ4.1.2.1', 
'REQ4.1.2.2', 
'REQ4.1.2.3', 
'REQ4.1.2.4', 
'REQ4.1.2.5'] 

Business Logic Layer 

Service, capability and skill 
models 

 
['REQ1.1', 
'REQ1.1.1', 
'REQ1.1.1.1', 
'REQ1.1.1.2', 
'REQ1.1.1.3', 
'REQ1.1.1.4', 
'REQ1.1.1.5', 
'REQ1.1.1.6', 
'REQ1.1.1.7', 
'REQ1.1.1.8', 
'REQ1.1.1.9', 
'REQ1.2.1', 
'REQ4.1.2.5', 
'REQ5.1.1'] 

Information Layer 

Dynamic Execution Engine 
 

['REQ5.3', 
'REQ5.3.1', 
'REQ5.3.1.1', 
'REQ5.3.1.2', 
'REQ5.3.1.3', 
'REQ5.3.1.4'] 

Business Logic Layer 

Trustworthiness Audit Tool 
 

['REQ4.1.1.1', 
'REQ4.1.1.2', 
'REQ4.1.1.3', 
'REQ4.1.2.3'] 

Business Logic Layer 

User Interface 
 

['REQ1.1.1.5', 
'REQ1.2.4'] 

Presentation Layer 

 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 23 
 
 

 

Internal 

3 SotA Analysis & Technology Assessment 

From Table 2 we can derive the following functional layer groups (main components): 

• Business Logic Layer — 8 components 

• Infrastructure Layer — 4 components 

• Integration Layer — 2 components 

• Information Layer — 3 components 

• Security Layer — 1 component 

• Presentation Layer — 2 components 

• Persistence Layer — 1 component 

Out of these, the infrastructure layer which compose the biggest part of the architecture would require 

a State-of-the-art analysis, along with the security aspects. The Integration and Information Layers 

would also need SotA with focus on Interoperability (Semantic & Technical). Business layer 

components are functional specific that require their own approach and the same applies for 

presentation and persistence layers, consequently no SotA is needed at this stage. On each component 

development tasks, SotA might be provided depending on the nature of the implementation. 

3.1 Generic Architectures (RAMI, IIoT, IIRA) 

The Fourth Industrial Revolution led to the implementation of IoT technologies into manufacturing 

systems. To address this development while also maintaining interoperability, several architectural 

models have emerged, each of which refers to different aspects of industrial IoT systems. Some of the 

most prominent architectures in the context of Industry 4.0 are explored below, including RAMI4.0, 

IIRA and other proposed IIoT frameworks. 

3.1.1 RAMI 

RAMI 4.0 (Reference Architectural Model Industry 4.0) constitutes a service-oriented framework that 

establishes hierarchical levels in order to classify the digitalization of industrial elements [8]. It is based 

on the Smart Grid Architecture Model (SGAM) and extends it, aiming to be aligned with the needs of 

Industry 4.0 , serving as a foundational reference architecture for this kind of systems [7]. This 

approach reinforces the decomposition of complex interconnections into simpler and easier to handle 

components [6]. 

 

https://www.sciencedirect.com/topics/engineering/smart-grid-architecture-model


D1.3 Software & information architecture 
 

 

   
 

 

Page | 24 
 
 

 

Internal 

 

Figure 2: RAMI 4.0 reference architecture [7] 

 

The levels that define RAMI 4.0 are: 

• Hierarchy Levels 

 

The right horizontal axis of RAMI 4.0 is structured upon four hierarchy levels (Enterprise, Work 

Centers, Station, Control Device) defined by IEC 62264, a global standard for enterprise IT and 

control systems. The purpose of these levels is the description of various functional aspects of 

manufacturing facilities [6]. Extending this approach, RAMI 4.0 introduces three additional 

layers in order to support the concept of a smart factory. Specifically, the ‘Field Device’ layer 

addresses the intelligent control of machines or systems, the ‘Product’ layer refers to the 

standardization of the manufactured product and the ‘Connected World’ layer is responsible 

for the cross-company collaboration [7]. 

 

• Life Cycle & Value Stream 

 

The left horizontal axis demonstrates the life cycle of entities like products and facilities [7], 

complying with the IEC 62890 standard for life cycle management. Apart from this, a 

differentiation is established between “types” and “instances”. A “type” serves as a template 

of an entity, which transitions into an “instance” during the production phase [6].  

 

• Layers 

 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 25 
 
 

 

Internal 

The six layers along the vertical axis aim to depict the breakdown of a machine into its 

individual attributes [6]. Each layer defines a different aspect, like data structures and 

communication behavior [7]. 

 

3.1.2 Industrial Internet Reference Architecture 

Industrial Internet Reference Architecture is a reference architecture developed by IIC intending to 

support IIoT systems. Its objective is to reinforce industrial interoperability and establishment of 

standards and technologies [10]. Its architecture is divided into three tiers: the Edge Tier, the Platform 

Tier and the Enterprise Tier. Within the Edge Tier, the various devices and sensors participating in the 

system are connected to the Edge Gateway through wired or wireless networks forming the Proximity 

Network. The role of the Edge Gateway is to manage these devices and pass their data to the Platform 

Tier through the Access Network. On the Platform Tier the data is processed and analyzed in order to 

be sent to the Enterprise Tier. On the Enterprise Tier, the user monitors the operations and provides 

the appropriate commands. These commands are transferred to the Platform Tier and then to the 

Edge Tier in order to trigger the appropriate actions [11]. 

 

 

Figure 3: IIRA architecture [11] 

 

IIRA defines four viewpoints to address the key aspects of an IIoT system  

• Business 

The “Business” viewpoint defines the purpose of implementing an IIoT system by identifying 

the stakeholders and mapping them with the system’s capabilities [10] [12]. 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 26 
 
 

 

Internal 

 

• Usage 

The “Usage” viewpoint focuses on the utilization of the system components in order to fulfill 

the defined capabilities [10] [12]. 

 

• Functional  

The “Functional” viewpoint outlines the system’s structure through the identification of its key 

components and the way they interact with each other and with external systems. It is further 

divided into five domains [10] [12]. 

 

 
Figure 4 : IIRA domains [11] 

 

o Control domain 

The “Control” domain provides sensing and actuation functionalities, accomplishing 

the control of an industrial system. Additionally, it supports communication-related 

functions that facilitate data exchange between components using various 

technologies, like APIs [11] [13]. 

 

o Operation domain 

The “Operation” domain is closely related to the “Control” domain. Specifically, it 

supports provisioning and deployment functions that enable remote access and 

lifecycle management of the asset [11] [13]. 

 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 27 
 
 

 

Internal 

o Information domain 

The “Information” domain is responsible for transformation, modeling and processing 

of data from system components. In this way, it enhances optimization based on 

informed decision-making [11] [13]. 

 

o Application domain 

The “Application” domain includes functions for management and monitoring through 

application logic and rules. It also enables interaction with relevant information 

through the use of APIs and user interfaces [11] [13]. 

 

o Business domain 

The “Business” domain describes various functionalities associated with business 

activities and processes. These functionalities include ERP, MES and Payments [11] 

[13]. 

 

• Implementation 

The “Implementation” viewpoint plays a vital role in identifying the necessary technologies for 

implementing functional components and defining the appropriate communication 

frameworks of IIoT systems [10][12]. 

 

3.1.3 Industrial Internet of Things 

While a plethora of IoT definitions exist, those associated with industrial use emphasize the integration 

of smart technologies into conventional objects in order to function as IoT devices [16]. In this context 

[17] provides a relevant definition for IoT: 

“The IoT represents a scenario in which every object or ‘thing’ is embedded with a sensor and is capable 

of automatically communicating its state with other objects and automated systems within the 

environment. Each object represents a node in a virtual network, continuously transmitting a large 

volume of data about itself and its surroundings...”Based on these considerations a preliminary 

definition of IIoT could be: 

• The application of IoT technologies within industrial environments [16]. 

Regardless of the indisputable significance of IIoT in Industry 4.0, a unified architecture has not been 

established. However, there have been various attempts to develop IIoT architectures. Two of these 

approaches are presented below. 

In [14], an IIoT architecture is proposed based on the integration of various layers and components 

including physical components, communication methods, data aggregation, data storage and analysis, 

and user interface. 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 28 
 
 

 

Internal 

 

Figure 5: Proposed IIoT architecture [14] 

 

Physical components 

Physical components represent all the physical entities within the manufacturing system, such 

as machines, sensors and actuators. 

 

Communication Methods 

Wireless protocols play a pivotal role in data exchange procedures between network elements 

and must meet several requirements, like low energy consumption and high throughput. 

 

Data aggregation methods 

Data aggregation is correlated with the collection of various different packets and the 

generation of a single output packet. In this way, the network’s lifespan is extended and the 

reduction of energy use is achieved [18]. The key data aggregation types include centralized, 

in-network, tree-based and cluster-based approaches [19]. 

 

Data Storage and analysis 

The secure software and hardware infrastructure establishes the cloud as the primary data 

storage component used in IIoT systems, offering reliability and scalability. Data stored in the 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 29 
 
 

 

Internal 

cloud is available for further processing using AI, data mining algorithms and machine learning 

algorithms. This process ensures the minimization of resource consumption, the enhancement 

of quality of service and the implementation of automated support. 

 

User Interface 

The interfaces’ compatibility should be extended to support various applications and hardware 

platforms. Through the use of these interfaces, IIoT reinforces industrial networks by enabling 

remote control of the system. 

 

Security Mechanisms 

Security plays a vital role in manufacturing systems due to the sensitive nature of industrial 

data. Addressing this issue, several security mechanisms are implemented through various 

methods, such as protocols, encryption techniques and firewalls. 

 

In [15], the proposed architecture is centered around edge computing across various IIoT cases, aiming 

to minimize network traffic and decision-making delay. This architecture is based on three primary 

layers: the Device layer, the Edge layer and the Cloud Application layer. 

 
Figure 6: Proposed IIoT architecture [15] 

 

Device Layer 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 30 
 
 

 

Internal 

The Device layer involves all the physical assets of the manufacturing system like sensors, 

machines, vehicles and robots. These assets gather parameter-related information via the use 

of sensors and transmit it to the Edge layer. For this process, wired communication 

technologies, such as Fieldbus and Industrial Optical Fiber, and wireless networks, including 

Wi-Fi and Bluetooth, are used. 

 

Edge Layer 

The Edge Layer focuses on receiving and processing data from the Edge Layer. It supports time-

sensitive functions such as edge security and privacy protection, data analytics, process 

optimization and real-time control.  

 

Cloud Application Layer 

The Cloud Application layer obtains valuable insights from large-scale data regarding resource 

distribution. It receives data from the Edge layer through public networks and provides models 

and microservices as feedback to the Edge layer for further execution. 

 

 

3.2 Security (Intra & Cross Company) 

3.2.1 Intra-company security 

3.2.1.1 Authentication & Authorization 

• Authorization refers to the procedure of deciding the level of access a user or a device has to 

certain resources. For instance, it determines whether an entity is permitted to read or 

modify data, execute programs and control actuators [21]. 

• Authentication specifies the verification of an entity and is a necessary step before 

authorization [21]. 

3.2.1.2 Authentication & Authentication mechanisms 

3.2.1.2.1 ABAC 

The Attribute-Based Access Control (ABAC) leverages attributes related to user, subject and 

environment in order to generate an access token. This token is evaluated against several access 

policies stored locally or accessed remotely. The ABAC model provides flexibility regarding the creation 

of access tokens as they are formed from a wide variety of attributes, unlike the RBAC model described 

in the next section, which is limited by a fixed set of predefined roles and token types, making it ideal 

for heterogeneous systems [23].  

 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 31 
 
 

 

Internal 

 

Figure 7: ABAC model [23] 

Although ABAC offers a reliable access control mechanism, its design and implementation cause 

significant challenges [23]. 

• ABAC performs intensive computational processes excluding, in this way, resource-

constrained devices. 

 

• While the combination of a wide range of attributes for the generation of the access token 

reinforces its implementation to heterogenous systems, it also creates conflicts among 

access policies. 

 

• The access token contains sensitive information about the user and the subject. Therefore, 

this data should be protected otherwise the trust of the model might be undermined [22]. 

3.2.1.2.2 RBAC 

The Role-Based Access Control model (RBAC) defines access control rules based on user 

responsibilities, privileges and administrative functions, while abstracting the user’s underlying tasks 

[22]. In RBAC, the access decisions are based on the user’s role instead of its identity. As presented in 

the figure below, every user is associated with at least one role and every role is correlated with a set 

of operations that determines access permissions. Within this approach the system security 

administrator is responsible for assigning these roles and their corresponding permissions, while it is 

possible to reassign them without the need to revoke the user’s access entirely. The accessor in RBAC 

model, similar to the CapBAC model described later, generates a token that encapsulates access-

related data. This token is evaluated from the targeted device regarding its alignment with policies 

defined by the administrator in order to determine whether access should be granted or not [23].  



D1.3 Software & information architecture 
 

 

   
 

 

Page | 32 
 
 

 

Internal 

 

Figure 8: RBAC model [23] 

Despite the significant advantages of the RBAC model, its implementation to general-purpose systems 

reveals several challenges [23]. 

• Establishing a concise set of roles for a wide range of heterogenous devices causes role 

proliferation across multiple domains [22]. 

 

• Within large-scale environments it becomes challenging to map roles to specific operations. 

 

• The existence of a centralized administrator in systems consisting of various subsystems is 

impractical. 

3.2.1.2.3 OAuth 

OAuth is an authorization protocol designed to enable secure access delegation. It supports access to 

server-hosted resources on behalf of a resource owner, without requesting the owner to share his 

credentials. This framework allows third-party applications to gain limited access to HTTP services 

either through the approval of the resource owner, or by acting on their own behalf. The resource 

owner delegates distinct access rights, while maintaining granular control over the access of his private 

resources. The resource server hosts the protected assets and responds to requests authenticated by 

access tokens. These tokens are populated by an authorization server after the resource owner’s 

identity and consent have been successfully verified [20] 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 33 
 
 

 

Internal 

 

Figure 9: OAuth protocol [29] 

3.2.1.2.4 CapBAC 

Capability-Based Access Control (Cap-BAC) is based on the Access Control Matrix (ACM) model but 

distinguishes itself from ACM by adopting a row-oriented approach, where each subject is correlated 

with one or more object-rights pairs referred to as capabilities. This list of capabilities is managed by 

the accessor rather than the resource. The accessed resource does not contain any information about 

access policy; instead, it enforces access control by validating the access list presented by the accessor. 

Specifically, the accessor generates a token that encapsulates access rights-related information and 

submits it to the targeted resource. The device then evaluates the access request based on the access 

control policy and the data provided by the token [23]. 

 

Figure 10: capBAC model [28] 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 34 
 
 

 

Internal 

 

3.2.1.2.5 orBAC 

orBAC extends the RBAC model by introducing an additional “organization” dimension [22]. This model 

intends to address the complexity of security policies through the integration of two abstraction layers: 

the abstract layer and the concrete layer. The basis of orBAC is the establishment of relationships 

between roles, activities and views to subjects, actions and objects respectively. Unlike other 

approaches that rely on two binary relations, the first links roles to organizations and the second 

connects subjects to roles. The orBAC model employs a ternary relation aiming to correlate subject 

role directly to an organization [27]. 

 

 

Figure 11: orBAC model 

• The Abstract Layer enables the definition of security policies based on abstract entities, 

independent of their implementation within each organization. 

• The Concrete Layer is responsible for assigning privileges to subjects based on the subject’s 

role, the requested action, the targeted object and the context. 

 

3.2.1.2.6 UCON 

The UCON model offers a dynamic solution regarding access control, allowing permissions to be 

revoked and usage to be terminated. This approach is ideal for distributed and heterogeneous systems. 

Within the policy model layer, several conditions are defined based on features of objects and subjects, 

system attributes and required user actions [22]. 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 35 
 
 

 

Internal 

 

 

Figure 12: UCON model [26] 

 

 

3.2.1.2.7 ReBAC 

Relationship-Based Access Control (ReBAC) introduces the concept of a binary relationship manager, 

differentiating itself from the traditional approach based on identity, role or attribute unary predicates. 

Instead, ReBAC establishes a relationship between the accessor and the asset. As shown in the figure 

below, access is granted only if the accessor has a friendship connection with the owner of the asset 

and the action is aligned with the appropriate access policy. Current applications of ReBAC primary 

found in the domain of social media applications, however it is believed to expand into more general-

purpose access control mechanisms in the future [23]. 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 36 
 
 

 

Internal 

 

Figure 13: ReBAC model 

 

3.2.2 Cross-company security 

3.2.2.1 Federated Identity Management 

Federated Identity Management is an approach that supports collaboration between entities such as 
identity providers and service providers on identity, policies and technologies related issues. It allows 
users to access shared resources seamlessly. The users are managed by the identity provider, which 
acts as an authoritative source of identity. 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 37 
 
 

 

Internal 

 

Figure 14: Federated Identity Management [48] 

Specifically, the identity provider populates authentication tokens to service providers and then they 
provide their services to the requestor [48]. 

3.2.2.1.1 Identity Federation Architectures 

3.2.2.1.1.1 SAML 

SAML is an XML-based infrastructure intended to describe and share information between 

organizations regarding security. This approach aims to provide a vendor-independent solution for 

achieving Single Sign-On and identity federation functionalities across different domains. SAML 

consists of the following building blocks: Assertions, Protocols, Bindings, Profiles, Metadata and 

Authentication Context [49]. 

• “Assertions” defines the format of the exchanged security-related information between the 

SAML participants. The information that is encompassed in this block is related to the subject 

of assertion, the validation of the assertion and the statements about the subject. 

 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 38 
 
 

 

Internal 

 

Figure 15: SAML components [49] 

• “Protocols” establishes the mechanisms for exchanging assertions and other necessary 

information to carry out the operations enabled by the SAML framework.  

• “Bindings” outlines the way that the SAML protocols are applied over different transport 

protocols. 

• “Profiles” is responsible for appropriately  linking assertions, protocols and bindings depending 

on a specific usage scenario. 

• “Metadata” is correlated with the sharing of configuration information between the 

participants. 

• Authentication Context is related to detailed information of the authentication process of a 

subject, including its method and its strength. 

 

3.2.2.1.1.2 Liberty Alliance Framework 

Liberty Alliance is a consortium focusing on open standards for federated identity management and 

identity-based web services. In this context, the Liberty Alliance Framework is based on standardized 

technologies, including XML, SOAP and SAML. Its architecture involves three key components: the 

Identity Federation Framework, the Identity Web Services Framework and the Identity Interface 

Specifications [49]. 

 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 39 
 
 

 

Internal 

 

Figure 16: Liberty Alliance Framework components [49] 

• Identity federation framework: This component provides identity federation services between 

the participants that form the so-called circle of trust. The circle of trust consists of entities 

that adopt Liberty-aligned technologies and bound by mutual trust established through 

operational agreements. 

• Identity web service framework: This component is built upon the capabilities of the identity 

federation framework component in order to create, use and consume identity services. These 

services are designed to retrieve or update identity-related information. 

• Identity services interface specification: This component utilizes the identity federation 

framework component and the identity web service components to establish practical 

identity-enabled web services. 

3.2.2.2 Data spaces 

A data space is a technology that emerged to tackle the challenge of collaborative data ecosystems in 

both enterprises and academic organizations. They enable data sharing and exchange among 

shareholders effortlessly, providing significant opportunities particularly when integrated with data 

analytics tools, including enhanced decision-making and insights extraction. In its core, data spaces 

constitute a collection of heterogenous data sources, enabling efficient access, management and 

analysis. This concept highlights the need for a shared information environment rather than individual 

data points [50]. Unlike the traditional centralized data platforms where the control is distributed 

among a few entities, data spaces pave the way for data sovereignty and interoperability [51][52]. 

3.2.2.2.1 Data space technology initiatives 

Data spaces are closely aligned with the European data strategy, which has led to the development of 

Common European Data Spaces. Its purpose is the reassurance of secure and reliable data exchange 

across the EU. The application of these data spaces contributes to a wide range of significant sectors 

including energy, agriculture and health [53]. The leading initiatives regarding data spaces are Gaia-X 

and the International Data Spaces Association (IDSA), both playing a pivotal role in establishing 

architectures, standards and governance models. The collaboration and alignment between these 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 40 
 
 

 

Internal 

initiatives have caused international interest in the field. Alongside them, open-source ecosystems 

such as FIWARE provide critical components to the data space infrastructure, including standardized 

data models [52]. However, the vast increase of data spaces initiatives generates a continuously more 

complex and challenging to track technical landscape [54]. 

3.2.2.2.1.1 IDSA 

The International Data Space Association (IDSA) constitutes a non-profit organization aiming to provide 

global standards for secure and sovereign data sharing. This approach targets to establish trustworthy 

ecosystems, where between its participants, data/service providers and consumers, there will be 

comprehensive and mutually accepted policies over data sharing. In this context, IDSA introduced the 

International Data Space Reference Architecture Model (IDS-RAM), which serves as the base for 

developing data spaces [55]. The IDS-RAM presented below highlights the interaction between its 

components and clarifies the necessary functionalities to create a secure network. Specifically, it is 

organized into three primary dimensions: security, certification and governance that are structured 

across five architectural layers: business, functional, informational, process and system.  

 

Figure 17: IDSA reference architecture [56] 

The cornerstone of this approach is the IDS Connector component, which is responsible for facilitating 

data and metadata exchange. Additionally, third-party applications can be downloaded from the App 

Store component and executed directly within the IDS connector environment. Following a successful 

negotiation procedure, handled by the Clearing House component, data can be securely shared 

between the provider and the consumer [56]. The main focus of IDSA lies on the assurance of data 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 41 
 
 

 

Internal 

sovereignty and the retainment of complete control over the way that data are accessed and used, 

paving the way for the rise of innovative cross-organizational services [50]. 

3.2.2.2.1.2 EDC 

Eclipse Dataspace Components (EDC) is a modular framework for data spaces implementation, aligned 

with the International Data Spaces standards. It includes several significant components such as 

Connector, Federated Catalog, Identity Hub and Registration Service. The functionalities of these 

components are accessible through reusable standard APIs, enhancing customized integrations in this 

manner. Similar to the IDS-RAM the Connector component constitutes the key element of this 

approach. It facilitates secure and policy-compliant inter-organizational data exchange, encompassing 

data querying, sharing and policy enforcement attributes. EDC-based data spaces offer the possibility 

of transactions even between participants with diverse levels of trust, including market competitors 

[50]. In order to ensure compatibility with both Gaia-X and IDSA standards, EDC is designed in 

alignment with the Gaia-X architectural principles, while it also supports IDS-based messages and 

policy mechanisms. Except from the support of IDSA compliant components, like Metadata Broker and 

Dynamic Attribute Provisioning Service, it also explores decentralized solutions such as identity 

management via Decentralized Identifiers and Federated Catalogs. Federated Catalogs facilitate 

publishing and detecting contract offers while the Identity Hub provides the identity information of 

the participants and the Registration Service acts as a registry of the participants [54]. 

 

 

Figure 18: The Dataspace Context [59] 

 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 42 
 
 

 

Internal 

3.2.2.2.1.3 FIWARE 

FIWARE is an open-source initiative providing a sustainable and interoperable software ecosystem, 

which supports the development of smart solutions and data spaces. Its application extends to a wide 

variety of digital transformation sectors. To achieve this, it provides a set of configurable software 

components (building blocks) that can be adapted to the requirements of each application [50]. The 

FIWARE reference architecture enables the integration with other platforms, facilitating the form of 

smart systems [57].  

 

Figure 19: FIWARE reference architecture [56] 

The core of its design is the context broker which facilitates seamless communication among smart 

applications through an interoperable data space. The content broker utilizes the NGSI API, a 

standardized interface for accessing and modifying data. Moreover, in order to ensure scalability and 

interoperability, FIWARE is equipped with an IDS connector intending to be aligned with the 

International Data Space Reference Architecture [56]. 

3.2.2.2.1.4 Gaia-X 

Gaia-X is a European initiative that aims to establish an open, transparent and secure digital ecosystem 

focusing on ensuring secure data sharing and providing reliable data services. To accomplish this, 

common policies are adopted across data spaces and built on top of already existing cloud 

infrastructure [55]. Regarding its architectural approach, Gaia-X relies on decentralization and 

federation, enabling the coexistence of different platforms in a harmonious manner, by following a 

shared set of patterns. Gaia-X is not operating as a single cloud provider, but it envisions a federated 

ecosystem with a plethora of cloud and data services. This interoperable and sovereign data ecosystem 

is based on agreed-upon policies and specifications [57]. 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 43 
 
 

 

Internal 

 

Figure 20: Gaia-X reference architecture [56] 

 

The Gaia-X reference architecture is divided into three conceptual layers: the user plane, the 

management plane and the trust plane. Within this architecture several federated services support the 

secure information sharing between the participants. The trust between these interactions is 

established through verifiable credentials, which are located within the participant’s self-description 

along with usage policies that define constraints of data usage [56]. 

3.3 Interoperability 

Interoperability is a term aiming to describe the ability of diverse entities to communicate and 

exchange information in a meaningful way with one another. In this context, interoperability extends 

to various levels, such as communication protocols, business models, hardware and software 

composition and policies. Therefore, in order to achieve a comprehensive approach, interoperability 

is examined through three distinct dimensions: semantic interoperability, syntactic interoperability 

and technical interoperability [35]. 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 44 
 
 

 

Internal 

3.3.1 Interoperability challenges 

Ensuring interoperability constitutes a challenging task. Some of the primary issues encountered are 

[43]: 

• Data Inconsistency: The growing complexity of systems generates a large amount of 

heterogenous data, leading to data inconsistencies. These inconsistencies require additional 

resources in order to process unstructured data. In contrast, the existence of structured data 

enables query operations to enhance effective analysis and filtering.  

• Scalability: Scalability issues arise from the combination of data from different sources with 

information provided from  legacy systems. Addressing this challenge, it is crucial to update 

and modify these systems intending to align them with new technological requirements. 

• Accommodate Scope of Data: The development and support of new domains for handling 

large amounts of data introduces another interoperability challenge. This issue generates the 

need for high-performance computing environments and advanced data storage solutions. 

 

3.3.2 Semantic Interoperability 

In the context of industrial environments, semantics are used to describe the link between signifiers. 

Semantic interoperability ensures that the meaning of the exchanged information remains intact and 

that it is comprehensible from the devices that take part. This constitutes a significant aspect of such 

systems due to the inability of the devices to comprehend vague and ambiguous data. In order to 

achieve this standardization,  vocabulary needs to be established todefine and translate information 

reliably. However, within industrial systems, data is structured in formats, such as CSV, JSON and XML, 

that are often not semantically aligned. Except from that, the various devices across the system use 

different models and languages and gateway devices lack the ability to unify them into a shared 

framework. [35]. 

3.3.2.1 Data exchange technologies 

For these reasons, the development of data exchange technologies supporting semantic 

interoperability is crucial. 

3.3.2.1.1 Web Ontology Language (OWL) 

Web Ontology Language (OWL) is a well-known standard established by the web consortium (W3C) 

regarding knowledge representation on the Semantic Web. Specifically, it focuses on structuring 

information about real-world entities and their relationships. OWL serves as a powerful and flexible 

tool that can be utilized across various sectors, such as healthcare and automotive industries. It is 

based on Description Logics, a well-established class of logic systems, providing OWL a reliable 

semantic foundation. One of the primary advantages of Web Ontology Language is the support of 

reasoning services, which include techniques for processing background information [36]. 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 45 
 
 

 

Internal 

3.3.2.1.2 Resource Definition Framework (RDF) 

The Resource Description Framework (RDF) is a framework intended to describe resources in a way 

that facilitates exchange and reuse of structured metadata. Specifically, it supports the representation 

of any identifiable entity in data, involving virtual entities such as webpages and websites, concrete 

entities such as people and places and abstract entities like categories and relationships between 

entities [38].  

RDF is based on XML, applying distinct constraints in order to ensure the provision of accurate semantic 

expressions. These expressions are intended to be comprehensible by humans as well as machines, 

assuring the semantic interoperability of the system. The metadata vocabularies and semantic 

definitions are developed by an information community, which defines the purpose and the structure 

of the approach, are exchanged and reused through the RDF infrastructure [37]. 

3.3.2.1.3 OPCUA Modelling and Communication Framework  

OPC UA (Open Platform Communications Unified Architecture) is a standard for communication and 

information modeling. It is considered one of the pillars of Industry 4.0 and ensures interoperability at 

the machine level. The primary benefits of OPC UA include the ability to define semantics in domain-

specific companion specifications, high IT security, and vendor-independent interoperability. OPC UA 

is fundamentally an information-centric data model that establishes basic rules for how data is exposed 

to any application or device that wishes to consume it. It provides a comprehensive framework for 

information modeling, enabling the structured representation of industrial data and processes. The 

core of an OPC UA information model is built upon objects, which can encapsulate variables and 

methods, and establish references to other objects. Clients can perform read and write operations on 

these variables and invoke methods that are then executed by the server. The fundamental unit of 

data within the OPC UA address space is a node, which is uniquely identified by a Node ID that includes 

a namespace URI. Nodes represent pieces of information about various components, such as sensors 

and actuators. The OPC UA address space itself provides a standardized and hierarchical way for OPC 

UA servers to represent these objects to OPC UA clients. Nodes possess attributes (the actual data 

value) and references to other nodes within their own address space, facilitating the creation of 

complex data structures and relationships. 

A cornerstone of OPC UA's ability to achieve semantic interoperability lies in its Companion 

Specifications. These specifications formalize industry-specific data models, allowing OPC UA to serve 

as a standard transport method for this specialized data. By providing an agreed-upon, standardized 

data model for collecting similar information in consistent formats within a particular industry, 

Companion Specifications ensure that different devices and systems from various vendors can 

understand and exchange data in a semantically consistent way. This directly addresses the challenge 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 46 
 
 

 

Internal 

of data interpretation across disparate systems and vendors. The OPC Foundation1, in collaboration 

with numerous partners, plays a crucial role in jointly creating these standardized information models. 

This collaborative effort positions the OPC Foundation as a central, neutral platform for industrial 

interoperability, akin to a "United Nations of automation," vital for achieving widespread, cross-vendor 

semantic understanding. These specifications not only define the object-oriented information of a 

system but also integrate IT security by defining access rights. 

3.3.2.1.4 Asset Administration Shell - Concept Description (AAS-CD) 

Asset Administration Shell (AAS) is a standardized digital representation of any physical or intellectual 

asset. It provides the complete digital description of the asset and its functionalities, which can be 

retrieved via API. 

 

Figure 21: Industry 4.0 Component [44] 

In the context of Asset Administration Shell (AAS), semantic interoperability is achieved using Semantic 

IDs and Concept Descriptions that enhance the AAS information with external references [44].  

Concept Descriptions were established in order to describe operational values within the AAS, such as 

pressure, temperature, speed and humidity and can be enriched with IEC61360 content, assuring a 

standardized semantic representation of an AAS element. AAS supports various types of identifiers 

ensuring unique identification of an element within the Asset Administration Shell. An important 

identifier is the semantic id, which in the case of a submodel it links it with semantic definitions or 

concept descriptions. These semantic definitions can be defined externally and be referenced via 

globally recognized semantic IDs. A key example is ECLASS, which provides a set of globally unique 

 
 

 

1 https://opcfoundation.org/ 
 

https://opcfoundation.org/


D1.3 Software & information architecture 
 

 

   
 

 

Page | 47 
 
 

 

Internal 

identifiers, known as International Registration Data Identifier (IRDI) [46] and, in this way, offers 

standardized Concept Descriptions for industrial product classification and properties [45]. 

The ECLASS dataset is divided into two blocks: the corpus and the query. The corpus includes a cluster 

of ECLASS properties related to centrifugal and positive displacements pumps. On the other hand, the 

query comprises paraphrased versions of the corpus entities. 

 

 

Figure 22: ECLASS dataset [47] 

The aim of this approach is to match each paraphrased query with its corresponding corpus entry 

through semantic alignment. Currently there are 672 corpus elements and 1711 associated 

paraphrases [47]. 

3.3.3 Syntactic interoperability 

Syntactic interoperability focuses on the structure of the exchanged information between the 

components of the system. It involves communication mechanisms and packaging techniques that aim 

to support machines and devices to efficiently interpret message representations during data 

transmission. Therefore, the primary objective of semantic interoperability is to define standard data 

formats, such as XML and JSON. Except from that, the system’s devices should be equipped with 

interoperable interfaces that convert raw information into standardized data formats and also 

recognize syntactic errors. Moreover, syntactical and grammatical rules should be established and 

followed in the encoding and decoding processes by sending and receiving devices accordingly. In the 

context of industrial environments, the main challenges regarding syntactic interoperability are the 

heterogeneity of the devices and the difficulty in establishing standard communication protocols [35]. 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 48 
 
 

 

Internal 

3.3.3.1 XML 

The Extensible Markup Language (XML) is a widely adopted W3C standard intended to represent 

structured documents.  Its simplicity and flexibility make it appealing for various operating systems, 

applications and browsers. The approach of XML is tag-based, like HTML, however providing the 

possibility of defining custom tags. Moreover, its tags, unlike HTML, have no specific semantics. XML 

documents involve both plain text and markups, and their structure can be visualized as ordered 

labeled trees. Its structure can include different types of nodes, like document nodes, elements, 

attributes and namespaces [4]. Originally, XML was designed to address the complexity of exchanging 

large amounts of data while also supporting customization. However, its capabilities were extended in 

order to handle the transfer of diverse types of information across heterogeneous distributed systems 

[34]. 

3.3.3.2 JSON 

JavaScript Object Notation is a lightweight data format built upon JavaScript programming language’s 

defined structures. In its core JSON documents consist of key-value pairs, where the name describes 

the represented information and value is the actual data. The value could also be another JSON 

document, supporting in this way an arbitrary level of nesting [30]. JSON constitutes the cornerstone 

of web applications, as it is easily understood by both developers and machines, and the main way to 

send and receive API requests is over the HTTP protocol [31]. Regarding its structure, JSON represents 

data as objects or as arrays. An object is described as an unordered collection of name-value pairs, 

where within these pairs information is contained that describes the object. The definition of the 

object starts with an opening brace and ends with a closing brace. On the other hand, an array is an 

ordered list of values, indexed by the position of the value in the list. The definition of an array starts 

with an opening bracket and ends with a closing bracket [32]. 

  

3.3.4 Technical Interoperability 

Technical interoperability refers to the exchange of information process between sensing and 

actuating elements within the industrial system, a procedure described as functional networking. It 

ensures that data sharing complies with specific standards, reinforcing the provision of service quality, 

while also maintaining data integrity and performance. In the context of industrial environments, 

technical interoperability facilitates seamless data exchange between heterogeneous devices based 

on established specifications and standards. To achieve this, standardized protocols, open-source 

platforms, and interoperable network standards should be followed [35]. 

3.3.4.1 Standardized protocols 

3.3.4.1.1 HTTP 

The Hypertext Transfer Protocol (HTTP) is a protocol designed to support distributed, collaborative and 

hypermedia information systems and constitutes a cornerstone of the World Wide Web since 1990. 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 49 
 
 

 

Internal 

Its first version, HTTP/0.9, was a basic protocol regarding raw data exchange over the Internet. The 

next version, HTTP/1.0, introduced additional attributes such as MIME-style messages formatting, 

allowing control over request and response semantics. Despite its improvements, HTTP/1.0 lacked 

various important features like hierarchical proxies, caching, persistent connections and virtual 

hosting. Furthermore, inconsistencies issues were presented along with incomplete implementations 

that complicate the identification of each application’s capabilities. These concerns paved the way for 

the development of a revised version that ensures the implementation of its features, HTTP/1.1. 

This protocol is aligned with the needs of the modern information systems that require except from 

data retrieval, search, front-end update and annotation, offering an open-ended set of methods and 

headers. Regarding messaging, a format similar to the one defined by the Multipurpose Internet Mail 

Extensions (MIME) is adopted. Moreover, it acts as a general-purpose protocol, enabling 

communication between user agents and gateways. These interactions ensure the access to resources 

across several internet-based applications [39]. 

 

 

Figure 23: HTTP flow diagram [12] 

Similarly to CoAP, HTTP utilizes Universal Resource Identifier (URI) rather than a topic-based approach 

regarding communication between server and client. Acting as a text-based protocol, HTTP does not 

impose strict limits on headers and message payloads; these aspects are defined by the web server. 

HTTP primarily uses TCP as transport protocol and TLS/SSL for security purposes [40]. 

3.3.4.1.2 REST 

Representational state transfer (REST) refers to web services aiming to ensure interoperability 

between computer systems on the internet. REST utilizes HTTP, due to its popularity, supporting its 

standard operations including GET, POST, PUT, DELETE. It was introduced in 2000 by Roy Fielding, 

alongside the development of HTTP/1.1, and it was built upon the structure of HTTP/1.0.  



D1.3 Software & information architecture 
 

 

   
 

 

Page | 50 
 
 

 

Internal 

 

Figure 24: REST [42] 

RESTful architectures leverage stateless communication and standardized operations in order to 

assure high-level performance, scalability and robustness. 

3.4 Conclusions 

Following the approach mentioned in the introductory Section 1 and combining the SotA with the Dow 

to fulfill the requirements from D1.1, the following statements are provided as conclusions to base the 

proposed conceptual architecture: 

• All generic architectures (RAMI, IIRA and IIoT) are highly relevant and specific aspects of these 

architectures should be considered. Most relevant are the three tiers of IIRA combined with 

the IIoT capabilities and finally the RAMI architecture and the 4.0 smart component, the AAS. 

• For cross company communication,data sovereignty plays a crucial role. The development of 

a dataspace seems most suitable. Further investigation should be performed in the dedicated 

task (T2.4) regarding its implementation and its functionalities. 

• Interoperability is addressed adequately by the Asset Administration Shell and its series of 

specifications. Semantic interoperability and syntactic interoperability are supported by the 

“Details of the Asset Administration Shell - Part 1” specifications with the Concept Description 

notion and by the serialization specifications respectively. Technical interoperability is 

supported by the “Details of the Asset Administration Shell - Part 2” specifications via the 

detailing of the API for exchanging information. 

These statements above will serve as the backbone of the RAASCEMAN architecture. 

 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 51 
 
 

 

Internal 

4 Conceptual Architecture 

Continuing the work from the use cases and requirements analysis with some logical groupings (mainly 

on the non-business functional layers) we can derive a group of 7 main components on business layer, 

2 main components on the infrastructure (including security, persistence and integration layers and 

slightly touching the Information Layer) and 2 main components on the Information Layer. In the below 

subsections each component is listed and analysed in terms of functionalities provided that fulfil its 

respective requirements. Finally on the last subsection an overall conceptual architecture is presented 

depicting all components and putting the basis for the information exchange and collaboration 

between them. 

4.1 Business Layer components 

In this layer components are grouped into two categories, the components that focus on intra-

company functionalities (Factory level support tools) and components that focus on the cross-

company functionalities (Supply chain level support tools). 

4.1.1 Supply Chain level support tools 

Cross-company or supply chain support tools support decision making and resilience. The “Impact 

Prediction” tool provides the impact of specific events along with their probability to happen while 

“Decision support tool” offers the capability of evaluating different supply-chain based scenaria for 

helping determining counter measures by analyzing a network of manufacturers/service providers for 

potentials collaborations. The “Trustworthiness Audit Tool” or simply “Audit Tool” works as a entry 

point of new participants in the network but also as an evaluation tool of the quality of the services 

offered by a specific network participant. Finally, the “Recommendation Engine” crawls the 

participants of the network to find the most suitable list of service providers that can fulfill a specific 

service request.  

These tools are to be developed under work package 3 and each of these tools are to be developed 

under a dedicated task as depicted in Figure 25. More details are provided in the following subsections. 

 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 52 
 
 

 

Internal 

 

Figure 25: Supply Chain Level support tools 

4.1.1.1 Impact Prediction Tool 

The goal of the impact prediction tool is to build a probabilistic framework, built upon algorithms such 

as the Bayesian inference network, to quantify how various unforeseen events (external, such as 

supply‐chain or market fluctuations, and internal, such as machine unavailability or workforce 

changes) may propagate through the production flow and affect manufacturing outcomes. First, 

different types of disruptive events are identified (drawing on information from the RAASCEMAN data 

model), and these events serve as inputs to the AI-based model, which can represent the causal 

relationships among factors influencing production. Conditional probabilities are assigned to each 

network node to model the likelihood and severity of each event’s impact. The deployed network then 

allows users to perform “what‐if” analyses given a scenario (e.g., a sudden supplier failure or a spike 

in customer demand) via the decision support tool of WP3. The impact prediction tool computes the 

probability distributions over downstream effects (e.g., delayed delivery, increased costs, or quality 

deviations). A high-level overview of the impact prediction tool is presented in Figure 26. 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 53 
 
 

 

Internal 

 

Figure 26: High-level overview of the impact prediction tool. 

4.1.1.1.1 Relationship with other RAASCEMAN tools 

The impact prediction tool has a relationship with the following RAASCEMAN components: 

• Data model repository: Data needed for the tool will be accessed through the data model 

repository of RAASCEMAN. From there, the tool will access information on the occurrence of 

foreseen and unforeseen events. The predicted impact will also be provided to the data model 

repository. 

• Decision support tool: The decision support tool will consume the outputs of the RAASCEMAN 

impact prediction tool. To facilitate the optimal interaction of the impact prediction tool with the 

decision support tool of RAASCEMAN, further refinement of the tool’s outputs will be performed 

in the context of WP3, Task 3.1. 

4.1.1.1.2 Expected impact 

The impact prediction tool provides a percentile estimation of the impact of internal and external 

unforeseen events. This functionality is essential in the supply chain level reconfiguration that 

RAASCEMAN will provide, as it will be a core input to the decision support tool of the project. This way, 

manufacturers will have an estimation of the events impact on their manufacturing operations, helping 

them to build more resilient supply chains.  

4.1.1.2 Decision Support Tool 

The Decision Support Tool (DST) developed by Flanders Make (FLM) plays a central role in enabling 

resilient and adaptive decision-making within the RAASCEMAN MaaS ecosystem. This tool supports 

manufacturers in evaluating complex, multi-faceted scenarios involving supply chain disruptions, 

capacity limitations and sustainability trade-offs. 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 54 
 
 

 

Internal 

4.1.1.2.1 Tool Capabilities 

The DST provides manufacturers with a data-driven decision-making environment by integrating inputs 

from product parts provided by the Product Digital Twin (T2.2), internal company planning and 

capability matching (T4.1 and T4.2), impact predictive model(s) covering disruptive events (T3.1) and 

is connected to the recommendation engine (T3.4) as depicted in Figure 27. The tool supports trade-

offs between various scenarios and consists of the following core functionalities: 

• Scenario Simulation & What-if Analysis: Users can simulate events (e.g., supplier 

disruptions, machine failures) and assess their effects on key performance indicators (KPIs) 

like cost, carbon footprint, lead time, and production throughput. 

• Multi-Criteria Decision Support: The tool allows to make trade-offs among conflicting 

manufacturing goals (e.g., speed vs. cost vs. emissions), enabling strategic prioritization 

under uncertainty. 

• Risk and Impact Integration: By connecting to the Impact Prediction Tool, the DST 

incorporates probabilistic event likelihoods and estimated impacts, enriching the decision 

context with forward-looking intelligence. 

• Dynamic Data Integration: It ingests structured data from Asset Administration Shells 

(AAS), product/process Digital Twins, and IIoT devices, ensuring alignment with live factory 

and supply chain status. 

• User-Driven Configuration & Visualization: The web-based interface allows users to 

configure goals, define event parameters, and visualize simulation outcomes. 

 

 

Figure 27: Positioning of the Decision support tool (DST) in relation to other tools and inputs 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 55 
 
 

 

Internal 

4.1.1.2.2 Interoperability and Architecture Role 

Technically, the DST serves as a business logic layer component within the RAASCEMAN software 

architecture. Throughout this architecture, we refer to a layered model (as established in WP1 and 

based on Table 2), grouping components into logical layers such as Information, Integration, and 

Persistence. The DST operates across these layers as follows.  

• Information Layer: via Digital Twin models for product and process information. 

• Integration Layer: through AAS/IIoT communication gateways. 

• Persistence Layer: accessing historical data for KPI benchmarking and validation. 

4.1.1.2.3 Expected Impact 

By offering a semantic reasoning interface for simulation, evaluation, and recommendation, the DST 

enables manufacturers to respond proactively to disruptions. It supports reconfiguration of supply 

chains and internal production plans, improving overall system agility and strategic alignment with 

resilience and sustainability objectives. 

4.1.1.3 Audit Tool 

A supplier audit tool tackles the issue of trustworthiness in a supply chain network. The core of the 

tool is a similarity measure comparing products manufactured in the past with offers for new product 

requests. The objective of the suppliers’ audit tool is to verify their service descriptions using historical 

data, such as quotes, delivered products and other relevant documents, providing insights into the 

achievable quality, delivery time and eco-friendliness of the supplier. 

4.1.1.3.1 Tool Capabilities 

The goal of an audit tool is twofold: 

1. Existing participant evaluation. Given a customer order and the production history, it provides 

a producer rating, which is an evaluation score that a producer can produce this product or 

provide this service with the confidence of n%. 

2. New customer audit (onboarding). Given the list of existing capabilities types, taken from the 

standard and norms, production history and the list of production resources, it estimates the 

producer’s capability instance with the parameters values as ranges, with the confidence of 

n%. 

Both functionalities use the same principle of evaluating similarity between various variables. Figure 

28 and Figure 29 give a high-level view of the tool. In both cases, we take various artifacts, such as 

production history, data from various sources, e.g., CAD drawings, product specifications, etc., 

codebase, and measure the similarities between these pieces of information and, in the first case, the 

order, and in the second case, the list of the capabilities types typical for the domain. After the first 

stage, we get either the list of similar products or the list of similar capabilities respectively. In the 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 56 
 
 

 

Internal 

second stage, we compare them to the current production resources available on the production floor 

to generate a producer rating or a capability instance. 

 

Figure 28: Evaluation of an existing partner 

 

 

Figure 29. Onboarding of a new partner 

 

4.1.1.3.2 Relationship with the other RAASCEMAN tools 

• Data models repository. The audit tool will use the information from the standard AAS 

submodels defined during the project, e.g., capabilities types, product features, business 

information, etc.  



D1.3 Software & information architecture 
 

 

   
 

 

Page | 57 
 
 

 

Internal 

• Recommendation engine. The tool will interact with the recommendation engine and provide 

it with the producer rating, that is, an aggregated evaluation of the producer’s capability to 

provide a required service. 

• Procedure and capability matching tool. The audit tool will require information about the 

existing production capabilities and resources, which can be taken from the capability 

matching tool. 

4.1.1.3.3 Expected Impact 

The audit tool tackles the issue of reliability and trustworthiness in the supply chain network. By 

providing the recommendation engine with the evaluation measure of how the supplier’s service 

description matches its actual capabilities it increases the trust between the MaaS network 

participants and supports informed decision making.  

4.1.1.4 Recommendation Engine 

A recommendation engine for dynamic supply chain generation will be capable of generating supply 

chain alternatives and providing recommendations such as finding and selecting suitable service 

providers and performing automated negotiations. 

4.1.1.4.1 Tool Capabilities 

The goal of the recommendation engine is to generate the alternative supply chains based on the 

order, proposals from the manufacturing services providers and KPIs. First, the engine builds the search 

space by sending the service requests to the MaaS network. Each participant of the MaaS network has 

an audit agent which is a part of the RAASCEMAN audit system The agent makes an audit as described 

previously and generates the score, which is send back together with the proposal. The RAASCEMAN 

network also provides a rating system analogous to the marketplaces where all the participants can 

evaluate each other. Based on the information received from the audit agents and the rating system 

the recommendation engine generates possible paths in the search space “Service – Service Provider” 

(see Figure 30 ). We assume that a manufacturing service can be provided by several manufacturers. 

4.1.1.4.2 Relationship with the other RAASCEMAN tools 

• Data models repository. The recommendation engine will use information about the 

production services from the standard AAS submodels defined during the project. 

• Audit tool. The recommendation engine will use the information received from the audit tool 

for building possible trustworthy supply chains. 

• Dynamic planning and scheduling tool: The recommendation engine will need feedback 

concerning technical feasibility and commercial properties of a service request. 

4.1.1.4.3 Expected Impact 

The recommendation engine will support the user in making informed decisions when choosing the 

required services providers by generating various supply chain alternatives and providing 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 58 
 
 

 

Internal 

recommendations such as finding and selecting suitable service providers and even performing 

automated negotiations. 

 

Figure 30: Recommendation and rating system. 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 59 
 
 

 

Internal 

4.1.2 Factory level support tools 

Factory Level support tools focus on optimizing operations and processes within individual production 

sites. For the context of RAASCEMAN these tools focus mainly on continuously adjusting production 

(“Dynamic Planning & Scheduling” tool) with the help of a tool which aims to offer different 

manufacturing sequences based on identifying resource suitability from required skills (“Capability 

Matching Engine”). Finally, the “Dynamic Execution” tool will be responsible to instruct the shopfloor 

machines of the needed adaptation and monitor the production status. 

These tools are to be developed under work package 4 and each of these tools are to be developed 

under a dedicated task as depicted in Figure 31. Moreover, an orchestrator component will be 

responsible to use the “Capability Matching” service and “Dynamic planning & scheduling” services to 

act as a “gateway” and “communication point” between the “Factory level support tools” and the 

“Supply Chain level support tools”. 

 

 

Figure 31: Factory level support tools 

4.1.2.1 Procedure and capability matching 

The Procedure and Capability Matching Tool (PCMT) is the factory‑level gateway that converts 

high‑level MaaS or MES service requests into resource‑aware process steps. Sitting in the 

Business‑Logic layer, it consumes semantic models from the Information layer (CSS, AAS submodels) 

and real‑time shop‑floor status via the AAS/IIoT Communication Gateway, then forwards ranked 

capability matches to the Dynamic Planning & Scheduling tool while factoring in trust scores from the 

Audit Tool. This tight coupling ensures every match reflects current machine states, operator 

availability, and supplier reliability. 

PCMT normalises heterogeneous inputs, executes SPARQL queries over a GraphDB of 

⟨resource, skill, parameter⟩ triples, filters results with hard constraints, and re‑weights them using 

cost, lead‑time, and trust criteria. It returns a Capability‑Match Manifest – task ID, ranked resources, 

and diagnostics – satisfying REQ5.1–5.1.4 and REQ4.1.2.5. By aligning semantic data with live factory 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 60 
 
 

 

Internal 

conditions, the tool raises machine utilization, shortens replanning loops, and provides a 

natural‑language interface for intuitive “what‑if” exploration, forming the semantic backbone of 

RAASCEMAN’s resilient, adaptive production workflow. 

PCMT inputs 

• Service Request: product/process requirements from MaaS network or internal MES – 

including tolerances, due date, KPI weights. 

• Semantic Models: CSS model, Service/Capability/Skill submodels, Product DT, AAS submodels. 

• Live Shop‑floor Data: machine states, tool wear, operator availability via AAS/IIoT Gateway 

(OPC UA, MQTT). 

• Trust & Risk Signals: supplier/manufacturer trust scores from Audit Tool, impact‑prediction 

risk flags (optional). 

PCMT outputs 

• Capability‑Match Manifest (JSON) 

o Task ID & required process steps 

o Ranked candidate resources with match scores 

o Constraint/feasibility diagnostics (missing skill, overload, etc.) 

• Alerts: “no feasible match” or “data missing” messages to Orchestrator. 

• Metrics Stream: matching latency, query statistics to Monitoring dashboard. 

• Human‑readable Summary: NL explanation of top matches for UI. 

4.1.2.2 Dynamic planning and scheduling 

The goal of the dynamic planning and scheduling component is to create new production schedules 

according to the current factory state and the provided information about replanning. The component 

uses the available information about intra-factory resources that needs to be planned or reordered 

and the result from the capability matching engine that specifies which processing steps needs to be 

executed considering given constraints. The result is a new plan that contains both the already planned 

steps and the new steps. If it is not possible to find a suitable plan, the component reports that no 

schedule exists to fulfil all constraints (e.g. finish within a given deadline). 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 61 
 
 

 

Internal 

 

Figure 32: Dynamic Planning and Scheduling Engine 

The component needs different inputs as a basis for correct planning, and they can be differentiated 

by their type. The first type are static inputs that are not changing over time and the second type are 

dynamic inputs that needs to be determined when the planning engine starts to calculate. The static 

input is the provided CSS model that builds the foundation for the planning algorithm and is used to 

set up a simulation model. Building this model is independent from the planning calculation itself and 

should be established as early as possible. Furthermore, it can be rebuilt if the state within a factory 

changes and the model needs to be validated again (e.g., after machine breakdowns or new available 

machines). The dynamic inputs are the current schedule, the new task, the list of available resources, 

and the determined constraints that needs to be fulfilled. Thereby, the constraints specify the planning 

goal (e.g., finish asap) and provides further information about the time frame in which the task has to 

be processed. After determination of all dynamic inputs, the simulation model allows to explore 

different planning states to evaluate possible results through simulating different scenarios (see Figure 

32). 

The outputs of the component are the newly calculated production plan and the resulting KPI’s. 

Furthermore, there can be a flag that signals if no solution is found. However, this could also be derived 

from the results of the planning algorithm and will be reported to the requesting service. The resulting 

production plan contains the new schedule and provides further information like expected start and 

end time which can be used on higher level (supply chain level) decision. If applicable, the component 

can also provide a list of best results that will be collected during planning task to enable flexibility and 

avoid recalculation steps if results become invalid in the meantime. 

 

4.1.2.3 Dynamic execution 

The interface of the dynamic execution for the orchestrator inside the factory enables seamless 

coordination within the production environment. It takes input parameters that describe the task, 

ensuring accurate execution. During operation, it streams process-relevant data to MES and ERP 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 62 
 
 

 

Internal 

systems for real-time monitoring. After execution, it provides output data as feedback for MES and 

ERP, supporting traceability and continuous process optimization. 

The tool aims to demonstrate key use cases in an industrial shop-floor environment, focusing on 

seamless human-robot collaboration for tasks such as assembly and maintenance, alongside 

coordinated multi-robot systems engaged in object sorting. These scenarios reflect typical challenges 

in agile manufacturing and provide a foundation for evaluating collaborative autonomy in dynamic 

settings. 

 

Figure 33: Dynamic Execution System Architecture 

Besides having two robots that are capable of executing shared collaborative tasks, the system also 

deals with workers and can dynamically allocate tasks to according to their availability. Computer 

vision plays a major role, as shown in Figure 33, in perceiving the environment and eventually 

extracting information that can be used by the task planner to orchestrate tasks or even steps of tasks 

between different available actors in a shopfloor. 

4.2 Information Layer components 

These components aim to act as interoperability enablers defining a common information model (CIM) 

containing supporting almost all the parts of the information exchange between components in the 

context of RAASCEMAN project. From one hand, we identified the implementation of the CSS 

(Capability, Service, Skill) model to be extended to support the RAASCEMAN cases describing offered 

services of network participants but also offered services from each factory’s shopfloor, and from the 

other hand a Product Digital Twin (PDT) model that could be used as specifications of a service request 

in the network and as documentation of a manufactured product offering functionalities of a Digital 

Product Passport (DPP). 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 63 
 
 

 

Internal 

These two information models will be detailed under WP2 and more specifically on each respective 

task T2.1 “Service, capability and skill modelling” and T2.2 “Product digital twin”. 

4.2.1 CSS model 

The Capability-Skill-Service (CSS) model, developed as an extension to the established Product-

Process-Resource (PPR) framework, enables a capability-based approach to engineering by clearly 

distinguishing between product design and production planning. Within this model, services 

encapsulate high-level functional descriptions, incorporating commercial considerations for requests 

and quotes as well as linking to production capabilities available on the shop floor. These services are 

underpinned by capabilities, which are abstract, resource-independent descriptions of production 

functions defined in the context of specific processes. Capabilities, in turn, are realized by Skills, which 

are concrete implementations of functions on physical resources, with defined parameters, inputs, 

outputs, and mechanisms for executing and monitoring of the production step. The CSS model 

supports two key perspectives: the required product-side view, representing the customer's needs, 

and the offered resource-side view, representing the supplier's manufacturing capabilities. This dual 

structure needs semantic matching between required and available services and capabilities within a 

Manufacturing-as-a-Service (MaaS) platform. For this matching to work effectively, capabilities from 

Cyber-Physical Production Modules (CPPMs) must be clearly described and explicitly linked to the skills 

that implement them. This description requires a digital representation, such as the AAS, to display the 

offered capabilities in the AAS submodel. In supporting the matching algorithm, it is helpful to include 

standards such as ECLASS or DIN 8580 in explaining these capabilities. In addition, the Product Digital 

Twin (PDT) includes a submodel that outlines the required capabilities, further supporting this 

matching process. Overall, the CSS model is a fundamental element in enabling flexible, efficient and 

interoperable manufacturing ecosystems, in line with the objectives of the digital transformation 

initiatives supported by the EU. In Figure 34 is the simplified overview of the CSS model with the most 

important aspects shown. 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 64 
 
 

 

Internal 

 

Figure 34: Simplified overview on most important aspects of the CSS model based on [58] 

 

4.2.2 Product Digital Twin (PDT) 

The PDT information model is one of the core components of the project, as it provides common data 

semantics about products and serves as a reference for all involved architectures and applications. The 

PDT information model deployed in the project has fundamental and optional parts. The fundamental 

part is modelled mainly by the AAS vocabularies, being extended with ECLASS and other ontologies 

proposed by the CIRPASS & CIRPASS 2 projects funded by the European Commission. The PDT AAS 

information model is composed of submodels representing different aspects of a product needed by 

different applications and use cases (see Figure 35). These submodels contain information needed for 

three basic groups: 

• Information required by RAASCEMAN Tasks: Inputs for the seven basic applications defined in 

RAASCEMAN, which are: (T3.1) Tool for impact prediction of disruptive events, (T3.2) Decision 

support Tool for companies in a dynamic MaaS network, (T3.3) Audit Tool for suppliers in MaaS 

network, (T3.4) Recommendation engine for dynamic supply chain generation, (T4.1) Tool for 

matching procedure and capability matching, (T4.2) Tool for dynamic planning & scheduling, 

(T4.3) Dynamic execution of tasks on the shopfloor.  

o Note that some applications do not require information from PDT at all, for example 

the work developed in T3.3. 

• Information for product lifecycle: Inputs for a DPP generator to specify a DPP for a product/lot 

of products instances. Such information can describe a life cycle of a product/lot of products 

Product

Process Ressource

Required
Capability

O ered
Capability

O ered
Service

Required
Service

Skill

Capability Methods

CSS Model Re nement

Matching provides

provides

provides

executes

requires
determines

is realized by

is implemented on

requires

Matching



D1.3 Software & information architecture 
 

 

   
 

 

Page | 65 
 
 

 

Internal 

in the five steps: (1) design, (2) manufacturing, (3) distribution & logistics, (4) use & 

maintenance, and (5) end-of-life or recycling. 

• Information for other features & applications: Materials for the other applications mentioned 

in the project called but not being defined concretely. Some of them are virtual product design, 

virtual commissioning, quality control. 

 

 

Figure 35: Product Digital Twin’s information containers 

Each submodel must follow strictly the AAS standard and should inherit from an AAS submodel 

template defined by the official submodels hub of IDTA. The optional part is an ontology that helps to 

link elements of the PDT information model with elements of other contexts (e.g. CSS). This ontology 

can support the reasoning feature of other tools such as matchmaking and production scheduling. 

4.3 Infrastructure Layer components 

The Infrastructure Layer components are the “AAS Infrastructure” and the “MaaS Platform” 

corresponding to the Factory level support and Supply Chain level support respectively.  

The “AAS Infrastructure” provides from one hand IIoT functionalities by data collection from the 

shopfloor and on the other provides a communication gateway to serve as a shopfloor monitor to 

extract real-time information of shopfloor status by implementing a direct connection with each 

shopfloor asset. Finally, the information is provided in an interoperable way allowing other 

components to seamlessly acquire shopfloor data independent of each data source communication 

protocol. 

The “MaaS Platform” aims at supporting the cross-company communication. Its “gateway” 

functionality supports the ability to exchange information between the different network participants. 

“Data Sovereignty” is of high importance in this module and it has an ability to log data exchange 

transactions. 

https://industrialdigitaltwin.org/en/content-hub/submodels


D1.3 Software & information architecture 
 

 

   
 

 

Page | 66 
 
 

 

Internal 

These components will be developed under the context of work package 2 and more specifically under 

tasks T2.3 “Information infrastructure” and T2.4 “Data platform extensions” respectively. 

4.3.1 AAS Infrastructure 

As previously stated, this component will support the Factory level tools by providing IIoT 

functionalities but also shopfloor context functionalities in terms of real-time data acquisition from 

shopfloor’s assets. Moreover, taking into account the SotA conclusions interoperability is implemented 

by an integration of an AAS repository and all these moderated by a security mechanism. The Figure 

36 shows the main components needed for implementing the AAS Infrastructure while also depicting 

the components that confront the afore mentioned aspects, Interoperability, IoT, Context and 

Security. 

 

 

Figure 36 AAS Infrastructure detailed architecture 

The schema above will be further detailed on the dedicated task “T2.3 - Information infrastructure”. 

4.3.1.1 Interoperability 

The adoption of the Industrie 4.0 specification regarding the definition and usage of the i4.0 smart 

component “Asset Administration Shell” provides interoperability on multiple layers. Semantic 

interoperability is provided by the use of Concept Description notion along with ECLASS semantics. 

Syntactic interoperability is provided by the Part 1 of the “Asset Administration Shell” specification 

regarding the AAS representation in JSON format. Finally Technical Interoperability is provided by the 

implementation of a set of RESTful services to interact with the AAS models defined in Part 2 of the 

“Asset Administration Shell” specification. 

4.3.1.2 IIoT / IoT 

A dedicated set of components should play the role of an IoT infrastructure. For these components the 

main functionalities offered is the implementation of a variety of industrial protocols for collecting 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 67 
 
 

 

Internal 

shopfloor data serving as a normalization of different data sources. The main challenge of this 

component is the ability to serve high frequency / high volume data in an efficient manner. Scalability 

also plays a vital role as industrial production lines tends to host hundred machines each one able to 

produce a vast volume of data. This role is undertaken by the Edge Connector component. The Edge 

connector by design should be able to scale supporting multiple shopfloor equipment but also the 

architecture allows seamlessly the deployment of more than one Edge Connector following the “divide 

and conquer” technique. The other component that complements the IIoT part of the AAS 

Infrastructure is the “Data Services” which provides a moderated way to access historical data for the 

shopfloor equipment. 

4.3.1.3 Shopfloor Context 

In a manufacturing environment and more specifically the shopfloor, the “Context” refers to the real-

time state under which manufacturing operations take place. Complemented by the “Edge 

Connectors” data derived from the shopfloor not only is stored for later processing (analytics etc.) but 

also update the shopfloor digital model aka the shopfloor related Asset Administration Shells. This way 

the main component that provides interoperability also serves as the “single source of truth”. 

4.3.1.4 Security 

Finally comes Security, a cross-component functionality that provides a moderated way for data 

access. Out of the many implementations and based on the technical interoperability decisions 

(RESTful services) one of the most suited Authentication frameworks is OAuth. With a dedicated 

implementation/tweaking, OAuth also can support authorization. The decision of using OAuth for 

authorization would require the OAuth authorization scheme to be supported on the other two 

components namely the AAS Platform (AAS repository) and the “Data Services” component. 

4.3.2 MaaS Platform 

The MaaS Platform serves as a communication mechanism for secure transactions. The requirements 

for such a space are standard interfaces, data sovereignty and transactions logging (historical data). 

Moreover, there is a requirement for onboarding participants on the network. 

These requirements are typically provided by and implemented through the main components of 

dataspaces. More specifically, the dataspace architecture is designed to provide security, sovereignty, 

and standardized data exchange between participants of a dataspace. The main component of such a 

system is a “Connector” component acting as the gateway to the dataspace infrastructure, but other 

infrastructure components are needed to ensure the requirements are fulfilled. The “Connector” 

component provides the standard interfaces and protocols (such as REST and IDS Information Model) 

that ensure interoperability. Moreover, data sovereignty is supported using common “vocabulary” 

model with semantic concepts (e.g., roles, contract terms) used for the verification of participants and 

provided by the “Identity Provider” component as part of a Dynamic Attribute Token (DAT) that verifies 

the participant along with scoped data. The DAT which accompanies each participant request is again 

validated from a “Policy Enforcement” mechanisms within the connectors. The “Logging Service” 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 68 
 
 

 

Internal 

component logs registrations and data exchange transactions in a secure manner providing historical 

data crucial for traceability. Finally, the “Service Metadata” component supports participant discovery 

and registration/onboarding by maintaining an updated registry of available connectors and their 

metadata.  

 

 

Figure 37 Main components of the MaaS Cross-company Infrastructure 

Based on the components, we can define two main flows of actions between them, one is the 

“onboarding/registration” flow of actions where the participants wants to register its provided service 

and the other is the actual “service call” initiated from a service consumer.  

The section below describes such communications and their interactions. 

4.3.2.1 “Onboarding/Registration” flow 

This flow is mainly for the service provider meaning the participant of the network that wants to make 

available a specific service. It starts with an interaction with the “Identity Provider” to acquire access 

to the dataspace, continues to the “Metadata Service” to register the service and closes with the 

“Logging Service”. For these transactions the service provider’s connector will be utilized. 

• Service Provider Connector → Identity Provider: Connector requests a Dynamic Attribute 

Token (DAT) from “Identity Provider” to prove its identity and access scope. On the same step 

“Identity Provider” consults the Comon Vocabulary to validate semantic concepts (e.g., roles, 

contract terms) used in attribute verification. 

• Service Provider Connector → Metadata Service: The Service Provider Connector registers its 

services along with contracts, and metadata in the Metadata Service’s catalogue for future 

discovery by Service Consumers. The Metadata Service makes sure that the provided DAT 

allows this action to be completed. 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 69 
 
 

 

Internal 

• Service Provider Connector → Logging Service: The Service Provider logs the publication or 

updates of its service metadata with the “Logging Service” for traceability and making sure 

that the service registration adheres to appropriate/applicable rules. 

 

Figure 38: Onboarding/Registration flow 

 

4.3.2.2 “Service Call” flow 

• Service Consumer Connector → Identity Provider: The Service Consumer Connector 

requests a Dynamic Attribute Token (DAT) from DAPS to prove its identity and access 

scope. 

o Identity Provider → Common Vocabulary: Identity Provider consults the 

Common Vocabulary to validate semantic concepts (e.g., roles, contract terms) 

used in attribute verification. 

• Service lookup: The following steps happens simultaneously 

o Service Consumer Connector → Broker Service Provider: With a valid DAT, the 

Service Consumer Connector queries the Broker to discover available service 

providers, and available metadata. 

o Service Consumer Connector → Logging Service: The Service Consumer 

Connector logs its discovery request with the Logging Service for auditing and 

traceability purposes. 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 70 
 
 

 

Internal 

• Service Consumer Connector → Service Provider Connector: Upon finding the suitable 

service to be “consumed” the Service Consumer Connector sends a request to the 

Service Provider, including the DAT and intended contract terms, requesting access to 

the registered service. 

• Service Provider Connector → Common Vocabulary: The Service Provider validates 

semantic validity of the request using the Common Vocabulary. 

• Service Provider Connector → Logging Service: The Service Provider logs the finalized 

contract to the Logging Service. 

• Service Provider Connector → Service Consumer Connector: Upon validation and 

contract agreement, the Service Provider Connector securely transfers/provides the 

requested service to the Service Consumer Connector. 

 

Figure 39: Service Call flow 

 

4.4 Conceptual Architecture Implementation 

The final step of the conceptual architecture is the implementation of the specific use cases to 
develop the RAASCEMAN platform. In the previous sections 4.1, 4.2 and 4.3 an overview of the 
building blocks of the architecture have been defined. This section concentrates on the interactions 
between the components and the infrastructure. 
As a generic approach we assume that each participant of the RAASCEMAN MaaS network has an intra-

company infrastructure composed by RAASCEMAN factor level support tools (section 4.1.2), and the 

AAS Infrastructure. The AAS Infrastructure dictates the interoperability protocol as REST calls and hosts 

the information layer components (section 4.2) as data models to be instantiated and populated per 

participant with its own specificities. 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 71 
 
 

 

Internal 

 

Figure 40 “AAS Infrastructure” Communication Architecture 

In Figure 40Error! Reference source not found. we can distinguish the AAS Infrastructure composed 

by an IoT part providing context and historical data but also a data model repository hosting the CSS 

and DPT information models. These models are accessed and utilized by the Factory level support tools 

that read context data but also populate PDT/PDP and CSS data for providing contextual information. 

 

The exact same information is to be utilized by the MaaS network participants. The idea here is to 

encapsulate the MaaS network required services as an asset having a dedicated AAS incorporating 

MaaS network operations like registration, request for quotation, order monitoring etc. Such an AAS 

would require a dedicated connection with the other participants of the network which is provided by 

the MaaS Gateway (i.e. an IDS Connector).  

 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 72 
 
 

 

Internal 

 

Figure 41 MaaS as an asset 

Finally, supply chain level tools need to interact with the MaaS network participants in a seamless way 

to access the MaaS services provided by the MaaS AAS. 

 

Figure 42 “MaaS Platform” Communication Architecture 

Putting it all together the Figure 43 displays the infrastructure components of each RAASCEMAN MaaS 

network participant containing also all the components developed under RAASCEMAN context. 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 73 
 
 

 

Internal 

 

Figure 43 MaaS Network participant Infrastructure 

The schema above provides a landscape of all the component required by a participant of the 

RAASCEMAN MaaS network to fully exploit RAASCEMAN functionalities without been required to 

support its participation with high end ERP and/or MES systems or other CAx systems. Nevertheless, 

the existence of similar systems (i.e. ERP, MES etc.) and other legacy systems will be supported by 

developing specific data bridges from the legacy systems towards the components with overlapping 

roles. 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 74 
 
 

 

Internal 

5 Conclusion 

This deliverable sets the basis for RAASCEMAN’s software and information architecture, based on the 

stakeholders’ requirements. Through the examination of state-of-the-art models, such as RAMI4.0 and 

IIRA and via the link of technical needs with functional components, a multi-layered conceptual 

architecture model has been developed. This approach addresses various significant aspects like 

service capability modelling, digital twins, secure data exchange and interoperability. The resulting 

architecture supports intra- and cross- company collaboration and enables dynamic reconfiguration of 

manufacturing processes in response of disruptions.  

This architectural groundwork paves the way for the development of the next work packages. 

Specifically, WP2 will develop the infrastructure components including support for both inter-company 

communication (AAS Infrastructure) and cross-company communication (MaaS Platform) and 

implement consistent data models (Product Digital Twin and CSS). These models will encompass 

various layers based on the needs defined by the architecture that was presented in this deliverable. 

WP3 and WP4 are responsible for the development of cross-company tools and intra-company tools 

respectively. These tools will be built upon the conceptual architecture and the layers that presented. 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 75 
 
 

 

Internal 

6 REFERENCES 

[1] IEEE Std 830-1998, IEEE Recommended Practice for Software Requirements Specifications. 

[2] ISO/IEC/IEEE 29148:2018, Systems and Software Engineering—Life Cycle Processes—
Requirements Engineering. 

[3] Rozanski, N., & Woods, E. (2011). Software Systems Architecture: Working With Stakeholders 
Using Viewpoints and Perspectives. Addison-Wesley. 

[4] INCOSE. (2015). Systems Engineering Handbook: A Guide for System Life Cycle Processes and 
Activities (4th ed.). 

[5] Sommerville, I. (2011). Software Engineering (9th ed.). Addison-Wesley. 

[6] Hankel, Martin, and Bosch Rexroth. "The reference architectural model industrie 4.0 (rami 4.0)." 

Zvei 2.2 (2015): 4-9. 

[7] Pisching, Marcos A., et al. "An architecture based on RAMI 4.0 to discover equipment to process 

operations required by products." Computers & Industrial Engineering 125 (2018): 574-591. 

[8] Kirmse, Andreas, et al. "How to rami 4.0: Towards an agent-based information management 

architecture." 2019 International Conference on High Performance Computing & Simulation (HPCS). 

IEEE, 2019. 

[9] André Pomp, Alexander Paulus, Andreas Kirmse, Vadim Kraus and Tobias Meisen, "Applying 

semantics to reduce the time to analytics within complex heterogeneous infrastructures", 

Technologies, vol. 6, no. 3, 2018. 

[10] P. Monteiro, M. Carvalho, F. Morais, M. Melo, R. J. Machado and F. Pereira, "Adoption of 

Architecture Reference Models for Industrial Information Management Systems," 2018 International 

Conference on Intelligent Systems (IS), Funchal, Portugal, 2018, pp. 763-770, doi: 

10.1109/IS.2018.8710550. 

[11] Mirani, A.A.; Velasco-Hernandez, G.; Awasthi, A.; Walsh, J. Key Challenges and Emerging 

Technologies in Industrial IoT Architectures: A Review. Sensors 2022, 22, 5836. 

https://doi.org/10.3390/s22155836 

[12] P. Leitão, S. Karnouskos, T. I. Strasser, X. Jia, J. Lee and A. W. Colombo, "Alignment of the IEEE 

Industrial Agents Recommended Practice Standard With the Reference Architectures RAMI4.0, IIRA, 

and SGAM," in IEEE Open Journal of the Industrial Electronics Society, vol. 4, pp. 98-111, 2023, doi: 

10.1109/OJIES.2023.3262549 

https://doi.org/10.3390/s22155836


D1.3 Software & information architecture 
 

 

   
 

 

Page | 76 
 
 

 

Internal 

[13] Helmann, Alexandre, Fernando Deschamps, and Eduardo de Freitas Rocha Loures. "Reference 

architectures for industry 4.0: Literature review." Transdisciplinary Engineering for Complex Socio-

technical Systems–Real-life Applications (2020): 171-180. 

[14] M. Alabadi, A. Habbal and X. Wei, "Industrial Internet of Things: Requirements, Architecture, 

Challenges, and Future Research Directions," in IEEE Access, vol. 10, pp. 66374-66400, 2022, doi: 

10.1109/ACCESS.2022.3185049. 

[15] T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman and D. O. Wu, "Edge Computing in Industrial 

Internet of Things: Architecture, Advances and Challenges," in IEEE Communications Surveys & 

Tutorials, vol. 22, no. 4, pp. 2462-2488, Fourthquarter 2020, doi: 10.1109/COMST.2020.3009103 

[16] Boyes, Hugh, et al. "The industrial internet of things (IIoT): An analysis framework." Computers in 

industry 101 (2018): 1-12. 

[17] P. Satyavolu, et al., Designing for Manufacturing’s ‘Internet of Things’. CognizantReport. p.4 

[online], (2014) Available: https://www.cognizant.com/InsightsWhitepapers/Designing-for-

Manufacturings-Internet-of-Things.pdf. 

[18] Pourghebleh, Behrouz, and Nima Jafari Navimipour. "Data aggregation mechanisms in the Internet 

of things: A systematic review of the literature and recommendations for future research." Journal of 

Network and Computer Applications 97 (2017): 23-34. 

[19] S. Sirsikar and S. Anavatti, "Issues of data aggregation methods in wireless sensor network: A 

survey", Proc. Comput. Sci., vol. 49, no. 1, pp. 194-201, 2015. 

[20] Chandra, J. Vijaya, Narasimham Challa, and Sai Kiran Pasupuletti. "Authentication and 

authorization mechanism for cloud security." International Journal of Engineering and Advanced 

Technology 8.6 (2019): 2072-2078. 

[21] H. Kim and E. A. Lee, "Authentication and Authorization for the Internet of Things," in IT 

Professional, vol. 19, no. 5, pp. 27-33, 2017, doi: 10.1109/MITP.2017.3680960. 

[22] Egala, Bhaskara Santhosh, and Ashok Kumar Paradhan. "Access Control and Authentication in IoT." 

Internet of Things: Security and Privacy in Cyberspace. Singapore: Springer Nature Singapore, 2022. 37-

54. 

[23] M. Alramadhan and K. Sha, "An Overview of Access Control Mechanisms for Internet of Things," 

2017 26th International Conference on Computer Communication and Networks (ICCCN), Vancouver, 

BC, Canada, 2017, pp. 1-6, doi: 10.1109/ICCCN.2017.8038503. 

[24] A. Niruntasukrat, C. Issariyapat, P. Pongpaibool, K. Meesublak, P. Aiumsupucgul and A. Panya, 

"Authorization mechanism for MQTT-based Internet of Things," 2016 IEEE International Conference on 

Communications Workshops (ICC), Kuala Lumpur, Malaysia, 2016, pp. 290-295, doi: 

10.1109/ICCW.2016.7503802. 

https://www.cognizant.com/InsightsWhitepapers/Designing-for-Manufacturings-Internet-of-Things.pdf
https://www.cognizant.com/InsightsWhitepapers/Designing-for-Manufacturings-Internet-of-Things.pdf


D1.3 Software & information architecture 
 

 

   
 

 

Page | 77 
 
 

 

Internal 

[25] Barkley, John. "Comparing simple role based access control models and access control lists." 

Proceedings of the second ACM workshop on Role-based access control. 1997. 

[26] Danwei, Chen, Huang Xiuli, and Ren Xunyi. "Access control of cloud service based on ucon." IEEE 

International Conference on Cloud Computing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. 

[27] Ameziane El Hassani, Abdeljebar, et al. "Integrity-OrBAC: a new model to preserve Critical 

Infrastructures integrity." International Journal of Information Security 14 (2015): 367-385. 

[28] Q. Wang, X. Feng, L. Wang, H. Wu and B. Düdder, "FECAC: Fine-Grained and Efficient Capability-

Based Access Control for Enterprize-Scale IoT Systems," in IEEE Internet of Things Journal, vol. 12, no. 

7, pp. 8669-8684, 1 April1, 2025, doi: 10.1109/JIOT.2024.3504825 

[29] F. Yang and S. Manoharan, "A security analysis of the OAuth protocol," 2013 IEEE Pacific Rim 

Conference on Communications, Computers and Signal Processing (PACRIM), Victoria, BC, Canada, 

2013, pp. 271-276, doi: 10.1109/PACRIM.2013.6625487. 

[30] Bourhis, Pierre, et al. "JSON: data model, query languages and schema specification." Proceedings 

of the 36th ACM SIGMOD-SIGACT-SIGAI symposium on principles of database systems. 2017. 

[31] Pezoa, Felipe, et al. "Foundations of JSON schema." Proceedings of the 25th international 

conference on World Wide Web. 2016. 

[32] Lennon, Joe. "Introduction to JSON." Beginning couchdb. Berkeley, CA: Apress, 2009. 87-105. 

[33] Bikakis, Nikos, et al. "The XML and semantic web worlds: technologies, interoperability and 

integration: a survey of the state of the art." Semantic hyper/multimedia adaptation: Schemes and 

applications (2013): 319-360. 

[34] Sharma, Sugam, et al. "Towards XML interoperability." Advances in Computer Science, Engineering 

& Applications: Proceedings of the Second International Conference on Computer Science, Engineering 

and Applications (ICCSEA 2012), May 25-27, 2012, New Delhi, India, Volume 1. Springer Berlin 

Heidelberg, 2012. 

[35] Hazra, Abhishek, et al. "A comprehensive survey on interoperability for IIoT: Taxonomy, standards, 

and future directions." ACM Computing Surveys (CSUR) 55.1 (2021): 1-35. 

[36] Sengupta, Kunal, and Pascal Hitzler. "Web ontology language (OWL)." Encyclopedia of Social 

Network Analysis and Mining (2014). 

[37] Needleman, Mark H. "Rdf." Serials Review 27.1 (2001): 58-61. 

[38] Hogan, Aidan, and Aidan Hogan. "Resource description framework." The Web of Data (2020): 59-

109. 

[39] Fielding, Roy, et al. "RFC2616: Hypertext Transfer Protocol--HTTP/1.1." (1999). 



D1.3 Software & information architecture 
 

 

   
 

 

Page | 78 
 
 

 

Internal 

[40] N. Naik, "Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP," 

2017 IEEE International Systems Engineering Symposium (ISSE), Vienna, Austria, 2017, pp. 1-7, doi: 

10.1109/SysEng.2017.8088251. 

[41] B. Wukkadada, K. Wankhede, R. Nambiar and A. Nair, "Comparison with HTTP and MQTT In 

Internet of Things (IoT)," 2018 International Conference on Inventive Research in Computing 

Applications (ICIRCA), Coimbatore, India, 2018, pp. 249-253, doi: 10.1109/ICIRCA.2018.8597401. 

[42] Penmetsa, C. (2024, January 14). Representational State Transfer (REST) and design principles. 

Medium. https://medium.com/codenx/representational-state-transfer-rest-and-design-principles-

98640faa1ab4 

[43] A. Kadadi, R. Agrawal, C. Nyamful and R. Atiq, "Challenges of data integration and interoperability 

in big data," 2014 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 2014, 

pp. 38-40, doi: 10.1109/BigData.2014.7004486. 

[44] M. Pajpach, M. Šlauka, R. Pribiš, P. Drahoš, E. Kučera and O. Haffner, "Asset Administration Shell 

– Key-enabling technology of interoperability in Industry 4.0," 2025 Cybernetics & Informatics (K&I), 

Mikulov na Morave, Czech Republic, 2025, pp. 1-6, doi: 10.1109/KI64036.2025.10916454. 

[45] Geibel, Fabian. "Digital Twin in Industrial Applications–How Model-Based Systems Engineering 

(MBSE) and Asset Administration Shell (AAS) complement each other." Engineering for a changing 

world: Proceedings: 60th ISC, Ilmenau Scientific Colloquium, Technische Universität Ilmenau, 

September 04-08, 2023. 2023. 

[46] Pribiš, R.; Beňo, L.; Drahoš, P. Asset Administration Shell Design Methodology Using Embedded 

OPC Unified Architecture Server. Electronics 2021, 10, 2520. 

https://doi.org/10.3390/electronics10202520 

[47] J. Beermann, R. Benfer, M. Both, J. Müller and C. Diedrich, "Comparison of Different Natural 

Language Processing Models to Achieve Semantic Interoperability of Heterogeneous Asset 

Administration Shells," 2023 IEEE 21st International Conference on Industrial Informatics (INDIN), 

Lemgo, Germany, 2023, pp. 1-6, doi: 10.1109/INDIN51400.2023.10218154. 

[48] A. A. Malik, H. Anwar and M. A. Shibli, "Federated Identity Management (FIM): Challenges and 

opportunities," 2015 Conference on Information Assurance and Cyber Security (CIACS), Rawalpindi, 

Pakistan, 2015, pp. 75-82, doi: 10.1109/CIACS.2015.7395570. 

[49] Kallela, Jyri. "Federated identity management solutions." TKK T-110.5190 seminar on 

internetworking. 2008. 

[50] C. Martella, A. Martella and A. Longo, "European data spaces for urban digital twins: user-and 

implementation-driven recommendations," 2024 IEEE International Conference on Big Data (BigData), 

Washington, DC, USA, 2024, pp. 5496-5505, doi: 10.1109/BigData62323.2024.10826100. 

https://medium.com/codenx/representational-state-transfer-rest-and-design-principles-98640faa1ab4
https://medium.com/codenx/representational-state-transfer-rest-and-design-principles-98640faa1ab4
https://doi.org/10.3390/electronics10202520


D1.3 Software & information architecture 
 

 

   
 

 

Page | 79 
 
 

 

Internal 

[51] Poikola, A., Takanen, V., Laszkowicz, P., & Toivonen, T. (2023). The technology landscape of data 

spaces. 

[52] Martella, Angelo, Cristian Martella, and Antonella Longo. "Designing Data Spaces: Navigating the 

European Initiatives Along Technical Specifications." arXiv preprint arXiv:2503.15993 (2025). 

[53] Arjona Aroca, J., Beltran Blanco, L., Blasco Roca, M., Saez Domingo, D., & Bernabeu Auban, J. M. 

(2024, October). Enabling EDIHs as Data Space intermediaries. In Proceedings of the 4th Eclipse 

Security, AI, Architecture and Modelling Conference on Data Space (pp. 18-24). 

[54] Dam, T., Klausner, L. D., Neumaier, S., & Priebe, T. (2023). A Survey of Dataspace Connector 

Implementations. arXiv preprint arXiv:2309.11282. 

[55] I. Matsunaga, T. Michikata and N. Koshizuka, "ITDT: International Testbed for Dataspace 

Technology," 2023 IEEE International Conference on Big Data (BigData), Sorrento, Italy, 2023, pp. 

4740-4747, doi: 10.1109/BigData59044.2023.10386196. 

[56] Galij, S., Pawlak, G., & Grzyb, S. (2024). Modeling Data Sovereignty in Public Cloud—A Comparison 

of Existing Solutions. Applied Sciences, 14(23), 10803. https://doi.org/10.3390/app142310803 

[57] Lopes, P. M., Guimarães, P., Pereira, T. F., & Machado, R. J. (2024). Gaia-X & Fiware: 

Implementation of a Federated Data Platform in Smart Cities. Procedia Computer Science, 239, 1506-

1515. 

[58] https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/2025-i40-

capabilities.pdf?__blob=publicationFile&v=5 

[59] https://eclipse-edc.github.io/documentation/for-adopters/ 

https://doi.org/10.3390/app142310803
https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/2025-i40-capabilities.pdf?__blob=publicationFile&v=5
https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/2025-i40-capabilities.pdf?__blob=publicationFile&v=5
https://eclipse-edc.github.io/documentation/for-adopters/

